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Abstract— Many standard robotic platforms are equipped
with at least a fixed 2D laser range finder and a monocular
camera. Although those platforms do not have sensors for 3D
depth sensing capability, knowledge of depth is an essential
part in many robotics activities. Therefore, recently, there is an
increasing interest in depth estimation using monocular images.
As this task is inherently ambiguous, the data-driven estimated
depth might be unreliable in robotics applications. In this paper,
we have attempted to improve the precision of monocular
depth estimation by introducing 2D planar observation from the
remaining laser range finder without extra cost. Specifically, we
construct a dense reference map from the sparse laser range
data, redefining the depth estimation task as estimating the
distance between the real and the reference depth. To solve
the problem, we construct a novel residual of residual neural
network, and tightly combine the classification and regression
losses for continuous depth estimation. Experimental results
suggest that our method achieves considerable promotion com-
pared to the state-of-the-art methods on both NYUD2 and
KITTI, validating the effectiveness of our method on leveraging
the additional sensory information. We further demonstrate the
potential usage of our method in obstacle avoidance where
our methodology provides comprehensive depth information
compared to the solution using monocular camera or 2D laser
range finder alone.

I. INTRODUCTION

Depth information plays an important role in daily lives

of human, and is also a valuable cue in computer vision and

robotics tasks. Many research works have demonstrated the

benefit of introducing depth information for tasks such as

object recognition and scene understanding [1]–[3]. Depth

sensors such as laser range finder and Kinect are commonly

employed in these applications. 3D laser range finders have

a high accuracy in general but also come with a high

cost, and they might fail with reflections when used alone.

Though Kinects are affordable, they have a quite limited

perception range of depth. As an alternative of 3D depth

sensors, monocular depth estimation has attracted much

attention recently. Estimating depth from monocular image
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Fig. 1. Illustration of our proposed method. The input of our method is a
single image and a planar of 2D laser range data, obtained from a monocular
camera and a 2D laser range finder. The aim of this paper is to precisely
estimate the dense depth of the full scene.

is particularly challenging as it is a well known ill-posed

problem. Thanks to the development of deep convolutional

neural networks over recent years, remarkable advances have

been achieved on the task of monocular depth estimation [4]–

[9]. However, the global scale of the scene remains a major

ambiguity in this task [4]. With this ambiguity, the depth es-

timation result might be unreliable for robotics applications.

In this regard, a natural option to consider is to see whether

the global ambiguity can be resolved using complementary

sensory information. We want to exploit this idea by intro-

ducing limited direct depth observations to the monocular

depth estimation task using a planar 2D laser range finder.

With the availability of cheap 2D laser range finders, this

option can be attractive in robotics applications in terms

of accuracy and cost of sensing. Illustrative examples can

be found in Figure 1. Ideally, the partially observed depth

information can be employed to better estimate the global

scale while the monocular image can be exploited for the

relative depth estimation. To achieve this goal, we construct

a novel convolutional neural network architecture to solve

the partially observed depth estimation task.

For mobile robots, the proposed configuration for partial

depth observation is very common as the 2D laser range

finder is indispensable for navigation and obstacle avoidance

on the mobile robot [10], [11]. We demonstrate that our

method facilitates greater perception for obstacle avoidance

compared to that of a single 2D laser range finder, as

the latter has a very limited vertical field of view which

might be insufficient to completely reflect the surrounding

environments especially with voids. Therefore, our method

is an extension for many mobile robots with no requirement

of additional cost.

The key task of this paper is to effectively leverage the
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limited and sparse 2D laser data for precise estimation of

the completed and dense depth. We formulate this problem

as an end-to-end learning task based on a novel fully convo-

lutional neural network. The contribution of this paper can

be summarized as follows:

• We introduce the 2D laser range data to the task of

monocular depth estimation by constructing a dense

reference depth map from the sparse observation. With

the dense reference map, the task of estimating the depth

is redefined as estimating the residual depth between the

real depth and the reference depth.

• To explicitly estimate the residual depth, we construct

a novel network architecture named residual of residual

neural network. Besides, the network combines both

classification and regression losses for effectively es-

timating the continuous depth value.

• We conduct experiments on both indoor and outdoor

environments and gain considerable promotion com-

pared to the state-of-the-art monocular depth estimation

methods, as well as another partially observed depth

estimation method. We further demonstrate its potential

usage in obstacle avoidance for mobile robots.

The remainder of the paper is organized as follow: Section II

gives a review of related works. The methodology for solving

the partially observed depth estimation task is given in

Section III, and the experimental results are presented in

Section IV. Finally, we conclude the paper in Section V.

II. RELATED WORKS

In recent years, deep learning methods are intensively

exploited in depth estimation using single images [4]–[9].

Deep networks have been validated to be more effective

compared to the conventional methods based on hand-crafted

features and graphical models [12], [13]. Eigen et al. [4]

firstly proposed to regress the depth value in the end-

to-end framework using deep neural network. That work

was extended to simultaneously estimate the depths, surface

normals and semantic labels in their latter work [5]. Liu

et al. [6] proposed to combine Conditional Random Field

(CRF) and the deep neural network for depth estimation.

The deep neural network learned the unary and pairwise

potentials and the CRF was jointly optimized with the

network. Mancini et al. [7] implemented an encoder-decoder

network architecture for monocular depth estimation and

it was particularly designed for obstacle detection. More

recently, Laina et al. [8] and Cao et al. [9] tackled the

depth estimation task based on the Residual Neural Network

(ResNet) [14], which won first place on the classification and

detection competition tasks at ILSVRC and COCO in 2015.

Specifically, Laina et al. [8] regressed the depth value using

the fully convolutional ResNet, and a novel up-convolutional

scheme was developed for fine-grained estimation. Instead of

regression, Cao et al. [9] regarded the depth estimation as a

classification task, where the estimation probability could be

obtained for refinement using CRF. Taking the advantage

of the deep ResNet, Laina et al. [8] and Cao et al. [9]

set a new baseline in the depth estimation task. As can

Fig. 2. Pipeline of the proposed method. A 3D surface is generated from the
2D laser scan along the gravity directly, which is then rendered to the image
plane to generate a dense reference depth map. By combining the image
and the reference depth, we estimate the depth based on a discriminative
neural network, where the residual between the reference depth and the
actual depth is explicitly estimated within the network.

be seen, previous works indicate a trend of learning all

the variations in depth estimation using one deeper model,

which might be difficult for disambiguating the global scale.

Differently, in this paper, we propose to take the advantage

of an external but common sensor on mobile robots to get an

relatively reliable estimation of the global scale, upon which

the variation that need to be modeled by the network could

be reduced. To solve this partially observed depth estimation

task, we propose a novel architecture of fully convolutional

network.

In a robotics scenario, there are also attempts for depth

estimation with partially observed depths. A popular topic is

the dense depth reconstruction with fusion of sparse 3D laser

range data and the monocular image [15], [16]. As the 3D

laser range data is obtained, this problem is usually formu-

lated as an inpainting problem considering the measurement

compatibility and the smoothness regularization. Both [15]

and [16] made efforts on designing the regularization term

and presented outstanding performances, where the former

introduced a second order smoothness term and the latter

searched optimal regularizer for different scenes. It is to be

noted that the inpainting method requires the laser range data

to cover most of the scene, which means it can only work

with 3D laser range finder. With only a single planar view of

2D laser range data, the inpainting formulation is intractable

due to severely insufficient information. In this paper, we

state the partially observed task as a discriminative learning

task, which can estimate the depth even with a planar view.

A relatively similar work to this paper is [17]. The authors

proposed to use a Multi-modal Auto-Encoder to impute the

missing depth in the sparse depth map estimated by structure

from motion. In this paper, we alternatively estimate the

residual between the real depth and the reference depth,

which is shown to be more effective in the experiments.

III. METHOD

In this section, we present our novel methods for the partial

observation task. The pipeline of our method is illustrated in

Figure 2, which is composed of the input construction and

the discriminative neural network.
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Fig. 3. Our residual of residual network architecture. The network is designed based on the ResNet-50, with 50 convolutional layers and 5 deconvolutional
layers. We add a global identity skip to send the reference depth to the last feature layer, which is denoted as the red line in the figure. The global identity
skip encourages the network to explicitly learn the residual depth. Best viewed in color.

A. Construction of reference depth

Given the partially observed depth data with a 2D laser

range finder, a naive idea of generating a sparse depth map is

by associating the available laser range depths to pixels and

rest of all the pixels are padded with zeros [17]. Intuitively,

the network can hardly learn useful information from the

sparse depth map generated using 2D laser range data due

to the extremely sparse distribution. On the other hand, such

sparse depth map is a mixture of two different categories

of values. The zero value filled in the unknown region is

the logical code to denote whether there is a valid depth

value, while the depth value is a real number for the distance.

Mixing the logical code and the depth value in the same map

might confuse the network.

To avoid the problems mentioned above, we construct a

dense reference map where every pixel is assigned with a

depth value, which we name as “reference depth” map. The

generation process is visualized in Figure 2. Firstly, median

filtering is applied to the laser scan readings for smoothness,

followed by interpolation between adjacent laser points. The

linear interpolation is employed for imputing the missing

depth values. Secondly, at each point in the imputed laser

scan, we generate a line along the gravity direction in 3D

space, resulting in a family of lines composing a surface

vertical to the ground plane. Finally, by rendering this virtual

surface to the image plane of the corresponding monocular

camera, we can obtain the dense reference depth map. A

related work to our reference depth map is Stixel [18], which

compactly represents the scene as many vertical rectangular

sticks. Their work validates the feasibility of our depth map

construction pipeline in real situation.

After constructing the reference depth map, it is concate-

nated with the corresponding image as the input of the subse-

quent neural network for learning. Note that with a dense ref-

erence depth map as the input, the task of the depth estimator

is transformed to sculpting a depth value from the reference,

while it is originally formulated as creating a depth value
from the unknown. This transformation significantly changes

the declaration of the depth estimation problem, which we

consider as one crucial reason for boosting the performance.

B. Residual of residual network

In order to sculpt the depth from the reference map,

we want to estimate the difference between the real depth

and the reference map, which we formally denote as

“residual depth”. Here we use the residual neural network

(ResNet) [14] as our network backbone because of its

inherent design to learn the residual, as well as its superior

performance on a wide range of computer vision tasks

recently. It should be noted that, the residual in this paper, is

assigned with exact physical concept, which reveals whether

the actual depth is closer or further than the reference

depth at each pixel. However, in the original ResNet, the

network is actually learning a transformed residual since

the input experiences nonlinear transformations during the

feed-forward propagation. Thus we propose the “residual of
residual network” to explicitly estimate the residual depth,

which is particularly suited to the partially observed estima-

tion tasks.

Our network architecture is illustrated in Figure 3, where

the main branch is a fully convolutional network extended

from the standard ResNet-50. ResNet is composed of two

kinds of residual blocks, i.e. the scaled residual blocks and

the identical residual blocks. In both residual blocks, there

are two branches, the lower one is an identity skip connection

aiming at preserving the information of the block input, and

the upper one consists of three convolutional layers which are

encouraged to model the residual with respect to the input.

Both kinds of blocks can be represented as

xl+1 = σ(F (xl,Wl) + h(xl)) (1)

where xl is the input of the lth block, Wl is the weights

of the three convolutional layers of the lth block, σ(x) =
max(0, x) is the nonlinear ReLU layer. For the scaled

residual blocks, h(·) is a convolutional layer to scale the

feature maps, while in identical residual blocks h(x) is an

identity mapping. Considering the nonlinear ReLU layer, as

F (xl,Wl) and h(xl) are not ensured to be positive, we have

the inequality

σ(F (xl,Wl) + h(xl)) �= σ(F (xl,Wl)) + σ(h(xl)) (2)
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Due to the existence of the nonlinear mapping, the block does

not exactly learn the residual xl+1 − xl between the input

and the output, even though h(·) is the identity mapping in

the identical residual block. Consequently, the full network

learns a transformed residual between the network input x0

and the final network output xL, rather than the residual

depth xL − x0, where x0 denotes the reference depth and

xL denotes the actual depth in our model. In addition, the

deconvolutional layers located between the residual blocks

and the network output further transform the feature maps

and interrupt our initial attempt for learning the residual

depth.

To encourage the network to explicitly learn to sculpt the

depth from the reference depth, we add a global identity

skip as the red line in Figure 3 to directly send the reference

depth to the last feature map before the output, which can

be presented as xL = xL−1 + x0. Thus xL−1 is enforced to

explicitly learn the residual depth map xL−x0. Hence there

are two categories of identity skips in our network, i.e. the

local identity skips connecting each residual block and the

global identity skip connecting the full network, that is the

reason it is called the residual of residual network.

C. Combination of classification and regression

Previous works usually formulated the depth estimation

problem as a regression task [4]–[6], [8] while Cao et

al. [9] pointed out that depth label classification outperforms

depth value regression. In this paper, we further refine the

loss function by tightly combining both classification and

regression. For classification, all depth values are discretized

into K bins, where the center depth value of each bin is

denoted as k. We set K = 101 in our experiments. Let

us denote the input feature vector of the softmax layer as

fi, then the probability of the corresponding sample i being

assigned to the discretized depth k is computed as

pki =
exp(fT

i θk)∑K
k=1 exp(f

T
i θk)

(3)

And the predicted depth is given as

ŷi = argmax
k

pki (4)

As (4) can only provide a discretized depth estimation, we

propose to calculate the predicted depth using the expected

value as

ȳi =

K∑
k=1

pki k (5)

By calculating the expected value, we obtain a continuous

depth estimation. The expectation is also more robust than

the discretized value with the maximal probability. Further-

more, it is also more convenient for calculating the gradients

with respect to the expected value (5) compared to the

argmax value (4).

With the predicted probability, the softmax classification

loss is given as

Lc =
M∑
i=1

K∑
k=1

δ([yi]− k) log(pki ) (6)

where M is the number of all samples, yi is the ground truth

depth and [yi] is the center depth value of the discretized bin

that yi falls in. δ(x) = 1 when x = 0, otherwise δ(x) = 0.

For regression, we use L1 loss to generate a constant gradient

even when the difference is small, which is formulated as

Lr =

M∑
i=1

|yi − ȳi| (7)

Then we combine the classification loss and the regression

loss to train the network as

L = Lc + αLr (8)

where α is the constant weight term. We set α = 1 in our

experiments.

When compared with individual classification or regres-

sion losses, our combination of both these two losses brings

the following remarks:

• The classification loss alone cannot distinguish the

difference across discretized bins while regression is

able to provide larger penalty to the larger predictive

errors.

• If the estimated depth falls into the correct bin, then

the classification loss would vanish. The regression loss

still works to eliminate the small loss within the bin,

leading to a finer estimation.

• Compared to the solution with regression loss alone,

our method can provide a probabilistic distribution.

Furthermore, as the depth is computed as the expected

value, it has a fixed range and thus is more robust

compared to the direct regression.

D. Estimation refinement

As shown in Figure 3, the network outputs the predicted

depth by summing the reference depth and the residual

depth, without additional trainable layers. We further refine

the predicted depth by applying the median filtering. It can

reduce the noises generated from the summation and slightly

promote the estimation performance.

IV. EXPERIMENTS

The experiments were preferably carried out on publicly

available data sets for benchmarking and easier comparison.

In this paper, we evaluate our method on the indoor dataset

NYUD2 [1] and the outdoor dataset KITTI [19].

A. Experimental setup

NYUD2 [1] is an indoor dataset collected using the

Microsoft Kinect. It covers 464 scenes with 4 million raw

image and depth pairs. We follow the official split to use 249

scenes for training and 215 scenes for testing. We sampled

50,000 images from the raw training data for training, where

the missing depth values were masked out during the training
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process. Test set includes 654 images with filled-in depth

values, which is the same as the other monocular depth

estimation methods [4]–[6], [8], [9]. We simulated a laser

scan that was perpendicular to the gravity direction, with a

fixed height above the ground plane. In our experiment, the

height was set as 80cm. Since NYUD2 is collected using

a hand-held Kinect, the camera pose varies a lot between

different frames, leading to an uncertain gravity direction.

Thus we follow Gupta. et al [20] to estimate the gravity

direction, of which we observe the accuracy is acceptable in

our experiments.

For the outdoor dataset KITTI [19], we use three scene

categories (“City”, “Residential” and “Road”) in the raw

data for training and testing, the same as Eigen et al. [4].

We sampled 5,000 images captured by the left color camera

from 30 scenes for training, and 632 images from other 29

scenes for testing. With the relative small training set, the

network is initialized with the weights learned from NYUD2.

The ground truth depth was obtained with a Velodyne HDL-

64E 3D laser scanner, where the missing depth was masked

out for both training and testing. As the Velodyne laser

scanner observed 64 laser scans in each frame, we simulated

a 2D laser range finder by taking one of the laser scans

as our partially observed data. The laser scan was selected

to be within a fixed range of polar angle in the spherical

coordinate, which was set as 88◦ ± 2◦ in our experiment.

As the sensors were fixed on a mobile car in the KITTI,

the gravity direction was fixed for all frames and could be

obtained from the offline calibration. It is to be noted that

the gravity direction is also fixed in practical applications of

both indoor and outdoor robots, and there is no requirement

for the additional estimation of the gravity direction.

For the network configuration, both image and reference

depth in NYUD2 were reshaped as 320 × 256, and the

predicted size was 160× 128. The input size of KITTI was

set as 320×96, with output size 160×48. Though the depth

is only available at the half bottom of the image in KITTI,

we input the full image into the network for learning the

context. Note that the predicted result was up-scaled to the

original size for evaluation on both NYUD2 and KITTI.

We implemented our residual of residual network based on

Caffe [21]. Following ResNet, we also used batch normaliza-

tion for efficient convergence and the batchsize was set as 16.

The loss was summed over all valid pixels and the learning

rate η = 10−6×0.98�n/1000�, n denotes the iteration number.

The model was trained for 80,000 iterations, which took

about 33 hours on a Nvidia Titan X. Following [4], we used

online data augmentation to avoid over-fitting. Specifically,

the data augmentation steps include rotation, scaling, color

transformation and flips.

We used the following standard metrics to evaluate our

performance, where yi is the ground truth depth, ȳi is the

estimated depth value and N is the number of total pixels:

• Root Mean Squared Error (rms):
√

1
N

∑
i(ȳi − yi)2

• Mean Absolute Relative Error (rel): 1
N

∑
i
|ȳi−yi|

yi

• Mean log10 Error (log10): 1
N

∑
i | log10 ȳi − log10 yi|

• Threshold δk: percentage of yi, s.t. max( ȳi

yi
, yi

ȳi
) < δk,

δ = 1.25 and k = 1, 2, 3.

B. Model evaluation

To discover the contribution of each part of the model, we

conducted comparison experiments on NYUD2 against some

variants of our proposed method as shown in Table I. Note

that all variants listed in the table were implemented based

on ResNet-50 with the same network capacity. Specifically,

we first performed the monocular depth estimation using

only RGB image as a baseline. Then the laser information

was added to the input as the reference depth map (“Ref.”),

without the residual of residual structure (“Res. of Res.”).

Furthermore, we added the global identity skip to explicitly

estimate the residual depth. Finally, the refinement was

performed to refine the predicted depth of our residual of

residual network. As classification loss is demonstrated to

be better than the regression loss [9], our combination loss

of classification and regression (“C.+R.”) is compared to

the classification loss (“C.”) in all network architectures. As

can be seen from the table,

• By comparing the results in the first two rows with

the followings, it can be seen that the performance is

substantially promoted with our reference depth map

as the additional input. It validates the effectiveness

of constructing a dense reference map from the sparse

partial observation as described in Section III-A, which

redefines the depth estimation task as sculpting the

depth from the reference.

• Comparison between the results with and without the

Res. of Res. structure demonstrates the superiority by

adding the global identity skip. As we explained in

Section III-B, the ResNet is inherently suited to our

partially observed task as we want to learn the residual

depth, adding the global identity skip further preserves

the exact physical concept of the residual, resulting in

the boosts of the estimation performance.

• By comparing the performances with classification loss

alone and with combination of classification and re-

gression, it can be seen that the combination raises the

performances in all model variants. It demonstrates the

benefit of our loss design as introduced in Section III-C.

• The refinement introduced in Section III-D further

brings slight improvement to the estimation accuracy.

C. Comparison with the state-of-the-art

In Table II, we compared with the state-of-the-art depth

estimation methods using our best model suggested in Ta-

ble I. We conducted experiments on both NYUD2 and KITTI

to validate the generalization ability of the proposed method.

Quantitative results in Table II illustrates that the depth esti-

mation accuracy is substantially promoted by adding a single

planar view of laser range data, validating our hypothesis of

resolving the scale ambiguity with laser sensor information.

5063

Authorized licensed use limited to: Zhejiang University. Downloaded on February 25,2021 at 03:41:50 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I

MODEL EVALUATION ON NYUD2.

Input Res. of Res. Loss Refined
Error (lower is better) Accuracy (higher is better)

rms rel log10 δ1 δ2 δ3
RGB – C. – 0.642 0.184 0.071 76.2 92.7 97.4

RGB – C.+R. – 0.617 0.173 0.068 77.2 93.8 97.8

RGB + Ref. No C. – 0.537 0.124 0.051 86.2 95.1 97.9

RGB + Ref. No C.+R. – 0.507 0.126 0.050 86.3 95.7 98.4

RGB + Ref. Yes C. No 0.480 0.108 0.045 87.0 95.8 98.5

RGB + Ref. Yes C.+R. No 0.451 0.106 0.044 87.4 96.2 98.8

RGB + Ref. Yes C.+R. Yes 0.442 0.104 0.043 87.8 96.4 98.9

TABLE II

COMPARISON WITH THE STATE-OF-THE-ART ON NYUD2 AND KITTI.

Dataset Method
Error (lower is better) Accuracy (higher is better)

rms rel log10 δ1 δ2 δ3

NYUD2

Liu et al. [6] 0.824 0.230 0.095 61.4 88.3 97.1

Eigen et al. [4] 0.907 0.215 – 61.1 88.7 97.1

Eigen et al. [5] 0.641 0.158 – 76.9 95.0 98.8

Cao et al. [9] 0.645 0.150 0.065 79.1 95.2 98.6

Laina et al. [8] 0.583 0.129 0.056 80.1 95.0 98.6

Ours 0.442 0.104 0.043 87.8 96.4 98.9

KITTI

Saxena et al. [13] 8.734 0.280 – 60.1 82.0 92.6

Eigen et al. [4] 7.156 0.190 – 69.2 89.9 96.7

Mancini et al. [7] 7.508 – – 31.8 61.7 81.3

Cadena et al. [17] 6.960 0.251 – 61.0 83.8 93.0

Ours 4.500 0.113 0.049 87.4 96.0 98.4

Image Eigen et al. Ours Ground truth Image Eigen et al. Ours Ground truth

Fig. 4. Comparison on NYUD2. For each test image, the corresponding depth estimated by Eigen et al. [5], our method and the ground truth are given
from left to right. Red denotes far and blue denotes close in the depth maps. It can be seen that the estimation of Eigen et al. [5] usually has a bias due
to the ambiguity of the global scale. Best viewed in color.

It is to be noted that Cadena et al. [17] also tackled the

depth estimation task with partially available depth. They

proposed to reconstruct the dense depth from a sparse depth

map with the unknown depth padded with a constant, while

we formulate the partially observed estimation task as a

residual learning task by constructing a dense reference map

and achieves a considerable promotion.

Corresponding qualitative comparisons are given in Fig-

ure 4 and Figure 5. For NYUD2, we compared with Eigen

et al. [5] and the ground truth in Figure 4. As can be seen,

taking the advantage of a single planar of laser data, our

methods parse the scenes better with a more accurate esti-

mation of the global scale. Figure 5 illustrates the comparison

between our method and the ground truth obtained from

the Velodyne laser range finder. Images and depth maps are

cropped to show the region with laser observations. It is to be

noted that the 3D laser range finder usually cannot observe

valid depth values when scanning the windows of cars, which
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Image Ours Ground truth

Fig. 5. Comparison on KITTI. For each test image, the corresponding depth estimated our method and the ground truth are given from left to right. Red
denotes far and blue denotes close in the depth images, and missing values are denoted as dark red. The white circles demonstrate that missing depth value
usually occurs due to the reflection when using the 3D laser range finder, while our method gives a reliable depth estimation. Best viewed in color.

might lead to unsafe predictions in the high-level decision

tasks. On the contrary, our method provides a relatively stable

depth estimation regardless of the reflection.

D. Analysis and potential usage

To reveal the intrinsic impact of introducing the limited

and sparse partial observation, we analyzed the depth es-

timation performances at different heights of the scene on

NYUD2. Specifically, we generated a set of scans that are

perpendicular to the gravity direction and sampled above the

ground from 10cm to 210cm at equal distances. For all test

images on NYUD2, the same evaluation metrics mentioned

above were applied to evaluate on those individual scans.

Figure 6 reveals the comparison between our monocular

depth estimation results (second row in Table I) and our

refined partially observed result (last row in Table I). It is to

be noted that there is a minimum point in each error metric

in Figure 6(a), 6(b), 6(c), and a corresponding maximum

point in each accuracy metric in Figure 6(d), 6(e), 6(f). This

is corresponding to the height of our laser scan (80cm),

which demonstrates that the observed laser information is

effectively preserved based on our residual of residual neu-

ral network. Furthermore, the partial observation not only

increases the performance at the height of the 2D laser

range finder, but also gives a considerable promotion to the

performances of the overall scene. In addition, Figure 6 also

indicates the possibility of further promotion by adding more

2D laser range scans to the other heights.

Figure 6 also demonstrates our method has a reliable root

mean squared error below the heights of 80cm. This is par-

ticularly suited to the robotics applications. We demonstrate

that our method has the potential for obstacle avoidance in

Figure 7. Specifically, we parsed the geometry based on dif-

ferent methods for comparison. This includes the simulated

2D laser range finder, the estimated dense depth and the

ground truth depth provided by the Kinect. Following the

general method for obstacle avoidance based on point clouds,

we projected each dense depth map to the 3D space, and then

down-projected all the 3D points within the height (0,M ] to

the 2D plane to obtain the nearest obstacle in the scene. Here

0 is the height of the ground and M is a safe range that is

usually set to be higher than the robot. We set M = 100cm

in this example. The simulated laser range scan was also set

to be perpendicular to the gravity direction, which can be

directly presented in the 2D plane. For thorough comparison,

we simulated two laser range finders at 20cm and 80cm

above the ground plane respectively. Figure 7 demonstrates

the images and the corresponding obstacle maps generated

from different methods. As can be seen, the laser scanner set

at 20cm fails to detect the upper stove and the seat of the

chairs in Figure 7(a), 7(c) and 7(d), while the laser scanner

set at 80cm misses the lower garbage bins as well as the seats

in Figure 7(b), 7(c) and 7(d). These failure detections might

lead to collision with the obstacles in practical applications,

which suggests that it is challenging for reliable obstacle

avoidance using a fixed 2D laser range finder due to its

limited view, indicating the importance of understanding the

3D geometry. For depth estimation with only monocular

images, there is usually a bias caused by the scale ambiguity.

By learning the depth from monocular image with a guide

of 2D laser scan at 80cm, our method relieve these problems

and provide a comprehensive depth estimation with higher

reliability for obstacle avoidance.

V. CONCLUSION

This paper explores the monocular depth estimation task.

By introducing sparse 2D laser range data into the depth

estimation task, our method effectively alleviates the global

scale ambiguity and produces a more reliable estimation

result. We redefined the depth estimation task as a residual

learning problem by constructing a dense reference map

from the sparse laser range data. It was implemented with

our residual of residual network, and the classification and

regression losses are combined for more effective estimation.

We conducted experiments on both indoor and outdoor

datasets including NYUD2 and KITTI. The performance was

compared with state-of-the-art techniques and our method

shows superior results on both datasets, validating the effec-

tiveness of the proposed method. Furthermore, it suggests a

promising direction to use sparse laser data to guide dense

depth estimation using learning methods.
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(a) rms (b) rel (c) log10 (d) δ1 (e) δ2 (f) δ3

Fig. 6. Results evaluated at different heights of the test images in NYUD2. In each figure, the x-axis is the height with respect to the ground in centimeter,
and the y-axis is the evaluation metric. The blue line denotes the performance of the depth estimation with only RGB image, and the red line denotes the
performance of the depth estimation with combination of the RGB image and a single line of laser range scan with height at 80cm. Best viewed in color.

(a) (b) (c) (d)

Fig. 7. Illustration of obstacle avoidance. The first row shows the image with the projected laser scan. The height of the laser is set at 20cm to simulate
the real situation. The second row demonstrates the corresponding obstacle maps in the two-dimensional space, with the gravity direction eliminated. Best
viewed in color.
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