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Abstract—Image representation has been intensively explored
in the domain of computer vision for its significant influence
on the relative tasks such as image clustering and classification.
It is valuable to learn a low-dimensional representation of an
image which preserves its inherent information from the original
image space. At the perspective of manifold learning, this is
implemented with the local invariant idea to capture the intrinsic
low-dimensional manifold embedded in the high-dimensional
input space. Inspired by the recent successes of deep archi-
tectures, we propose a local invariant deep nonlinear mapping
algorithm, called graph regularized auto-encoder (GAE). With
the graph regularization, the proposed method preserves the local
connectivity from the original image space to the representation
space, while the stacked auto-encoders provide explicit encoding
model for fast inference and powerful expressive capacity for
complex modeling. Theoretical analysis shows that the graph reg-
ularizer penalizes the weighted Frobenius norm of the Jacobian
matrix of the encoder mapping, where the weight matrix captures
the local property in the input space. Furthermore, the under-
lying effects on the hidden representation space are revealed,
providing insightful explanation to the advantage of the proposed
method. Finally, the experimental results on both clustering and
classification tasks demonstrate the effectiveness of our GAE as
well as the correctness of the proposed theoretical analysis, and
it also suggests that GAE is a superior solution to the current
deep representation learning techniques comparing with variant
auto-encoders and existing local invariant methods.

Index Terms— Auto-encoders, local

invariance.

graph regularization,

I. INTRODUCTION

LTHOUGH the dense original image can provide intu-

itive visual representation, it is well known that this raw
representation may cover the hidden semantic patterns which
need to be recognized by those image based learning tasks.
On the other side, the performance of the machine learning
method also strongly depends on the corresponding data
representation to which they are applied. Thus constructing
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an appropriate image representation becomes a fundamental
problem in visual analysis.

Given an image data matrix X € R™™ each column
of X corresponding to an image, finding its underlying rep-
resentation is to build an embedding from image space to
representation space, H = F(X) (H € R™™), where each
column vector of H is the representation of the corresponding
image. In general, the embedding function F can be an itera-
tive algorithm such as sparse coding and nonnegative matrix
factorization [1], [2], or an inference encoder with linear or
non-linear form, like principal component analysis and auto-
encoder [3], [4]. As the problem of embedding learning is
mostly over-parameterized, an additional regularizer is usually
employed to constrain the underlying structure of the repre-
sentation space. Therefore, the model of the embedding and
the design of the regularizer are two focuses in representation
learning.

A usual regularizer follows the local invariant idea, which
regularizes the representation space to preserve the local
structure of the neighborhood from the input space. It is
inspired by the manifold assumption [5] that the intrinsic
dimension of image data is considered to be much lower than
the dimension of pixels in images. Then the local invariant
regularizer aims to capture the intrinsic low-dimensional man-
ifold embedded in the high-dimensional space. With this reg-
ularizer, many successful dimension reduction methods have
been proposed such as Locally Linear Embedding (LLE) [6],
ISOMAP [7], and Graph regularized Nonnegative Matrix Fac-
torization (GNMF) [8]. The lower-dimensional representations
found by these algorithms showed excellent performance on
clustering. However, most of these methods do not have
an explicit encoder for F. As a result, it is unclear how
to leverage the learned embedding to the external test data
without retraining. In addition, the models for these algorithms
are considered to be shallow [9], leading to limited expressive
capacity for capturing the variations in relatively complex data.

In the recent decade, stacked auto-encoders, inspired by
the greedy unsupervised learning strategy on deep models
training [4], [10], [11], demonstrated its remarkable effective-
ness in representation learning. Based on the better expressive
capability of deep architecture, some researchers proposed that
adding regularizer to stacked auto-encoders, such as sparse
auto-encoder (SAE) and contractive auto-encoder (CAE), can
further improve the performance in image based learning
tasks [12], [13]. Besides, in our early study [14], the local
invariant idea is implemented as a graph regularizer by encour-
aging the representation to preserve the local connectivity
in the input space, which is called graph regularized auto-
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encoder (GAE). It is also investigated in another following
study [15]. Unfortunately, these works did not theoretically
reveal the intrinsic influence of the graph regularizer, also not
clarify its relationships to other auto-encoder regularizers.

In this paper, we present the design of the GAE as well
as the efforts toward understanding GAE’s underlying mecha-
nism theoretically and experimentally. A stochastic gradient
algorithm is also designed for efficient training on large
datasets. The contributions are summarized as follows:

o With the graph regularization imposed to the auto-
encoders, our GAE can preserve the local connectivity
and provide powerful expressive capacity at the same
time, which extends the conventional manifold learning
algorithms into the context of deep architecture, and equip
them with encoders for fast inference of representation on
external test data.

« To understand the intrinsic structure of the representation
learned by GAE, we give a theoretical analysis on the
graph regularization. We analyze the local property of
the input space, as well as the effects of constraining
the local property on hidden space. Furthermore, we
also clarify the relationship between the GAE and other
popular variants of auto-encoders, SAE and CAE on the
learned representations.

o Substantial experimental results are presented on both
clustering and classification problems. GAE demonstrates
competitive performance comparing with other state-of-
the-art methods on both unsupervised and supervised
learning tasks, validating the effectiveness and the the-
oretical analysis of the proposed GAE. Besides, the
learned representations and parameters are visualized for
further analyzing, which provides an insightful way for
understanding the influence of the hyper-parameters in
the graph regularizer.

The remainder of this paper is organized as follows:
Section II gives a review on the related works. In Section III,
we introduce our graph regularized auto-encoder for image
representation learning tasks. We uncover the intrinsic
effects of the graph regularizer using theoretical analysis in
Section IV. Then comparison experiments on both clustering
and classification tasks are presented in Section V. Finally, we
provide a conclusion and future works in Section VI.

II. BACKGROUND AND RELATED WORKS

In the conventional efforts on image based learning tasks,
most of researchers focus on representing the image with hand-
craft features. They have achieved significant successes with
the fixed representation function H = F(X) [16]-[19]. How-
ever, these features usually should be specifically designed for
different tasks. There are another series of methods that learn
the representation with trainable structures, which attracted
much attention due to the successful unsupervised learning
criterion on deep architectures [4], [10], [11]. Given sufficient
amount of training data, these deep learning methods that
discover and extract features automatically can usually achieve
better results on a series of tasks, such as object
classification [13], [20], [21], visual tracking [22], [23], human
pose recovery [24] and human re-identification [25], [26].
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Deep architectures can be considered as incomplete or over-
complete settings, depending on whether the dimension of
the representation space is smaller or larger than that of
input space. In this paper, we focus on the incomplete deep
architecture to find the lower-dimensional embedding from
the input space, which can also be regarded as a dimension
reduction model. At the perspective of dimension reduction,
the learned representation should have a lower dimension
than the original one, i.e. [ < n, and express the intrinsic
property of data better at the same time. The representation
capability of the lower dimension can usually be measured
by the performance of the classification or clustering on H.
One of the usual frameworks to model the dimension reduction
problem is an optimization problem to minimize the following
cost function,

C=0(X,H)+Y(H) (1

where the first term measures the approximation of H to X,
and the second term constrains the structure of the represen-
tation space. Under the manifold assumption [5], the aim of
W(H) is to preserve the local property of input space in the
representation space.

As a popular model to construct deep architectures, the
auto-encoder [27], [28] and its variants show their power-
ful expressive capacity on the unsupervised representation
learning. The SAE [12], [29]-[31] imposes a sparsity penalty
on the hidden activations. It restricts the SAE to represent
the data manifold with limited activations, thus prevents
SAE from reconstructing all the input data points includ-
ing the noises [32]. Different with sparse auto-encoder, the
CAE [13], [20] tries to penalize the sensitivity to the input
explicitly by constraining the Jacobian matrix of the encoder
mapping. This method achieves state-of-the-art classifica-
tion performance on a range of datasets. Denoising auto-
encoder (DAE) [21], [33], [34] reconstructs the clear input
from the input with small perturbations, which can be regarded
as mapping a point’s neighborhood to that point. Thus there is
also a requirement on local insensitivity. Generally, the insen-
sitive representation is often accompanied by the saturation,
as the saturated regions of the nonlinear activation in auto-
encoders are invariant to a range of inputs. Therefore the
saturated auto-encoder [32] explicitly encourages the hidden
activations in the saturated regions. The authors [32] also
point out that the saturated auto-encoder can achieve low
reconstruction error on the low-dimensional data manifold, and
the reconstruction error will be raised up fast when the input
moves away from the data manifold.

From all these kind of auto-encoders we can see, the
representation should be insensitive to the small perturbation
of the input. Alain and Bengio [35] point out the insensitivity
could be assured by the penalty term corresponding to the
Jacobian matrix of the encoder activations with respect to
the input, which means the representation should be invariant
to the neighborhood of the sampled data. This idea is also
reflected in manifold learning, which aims at preserving the
local neighborhood information of the input space to the
hidden space. There are many successful manifold learning
algorithms such as Locally Linear Embedding (LLE) [6],
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ISOMAP [7], and Laplacian Eigenmap [36], as well as their
applications in real problems [37]-[39], which all implement
the idea of local invariance that nearby points are likely to have
similar embeddings. However, as Bengio and LeCun [9] say,
these methods can’t perform well on generalization because of
curse of dimensionality. To relieve this problem, GNMF [8]
adds a reconstruction term while keeping the local invariance.
The success of GNMF also confirms the importance of keeping
reconstruction term in the cost function, as auto-encoders do.

There are also some works on graph regularized neural
network architectures for special tasks [40], [41]. These works
validate the effectiveness of introducing the local invariant
constraints into deep architectures rather than auto-encoders.
The GAE are also studied in [15] and [42]. In these papers as
well as our early paper, the performance of GAE on supervised
and unsupervised learning tasks are demonstrated. However,
no theoretical analysis was included so that the understanding
of underlying mechanism of GAE is limited. In this paper,
we focus on the contribution of theoretic analysis and its
experiment validation as a complement to our previous works
of GAE [14].

III. GRAPH REGULARIZED AUTO-ENCODER

We follow the cost functions generally employed in auto-
encoders. The reconstruction term corresponds to the first
term ®(X, H) in (1) since it requires the hidden represen-
tation reconstructs the original input, which means H should
preserve essential information of X. While only considering
the reconstruction term usually can’t lead to a good result,
many works [12], [13], [21], [29] then focus on designing
the additional constraint term, i.e. W(H). In this section, we
focus on designing the second term W(H) to constrain the
representation space, and introduce our graph regularization
that implements locally geometrical invariance.

A. Single Layer Auto-Encoder Regularized With Graph

In our Graph regularized Auto-Encoder (GAE), both the
decoder and the encoder use sigmoid as their activation
functions. Denote sigmoid function as f(x) = 1/(1 + ™).
Then the encoder and decoder can be presented as follow:

H = f(WX +b)
X=fWTH+o)

where H and X denote the hidden representation and the
reconstruction respectively. We call such architecture with one
encoder connected by one decoder as single layer auto-encoder
since it has only one hidden layer. In our GAE, we consider
the auto-encoder with tied weights, which means the weight
matrix in the decoder is the transpose of the weight matrix in
the encoder.

Under the manifold assumption, data samples are considered
lying on the vicinity of a low-dimensional manifold in the
high-dimensional space. As the representation should discover
the latent structure of the original data, the geometrical struc-
ture of the data will be the ideal underlying structure in
representation learning. A reasonable assumption is that if
two data points x;,x; are close in the intrinsic geometry of
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the data distribution, then their corresponding representations,
hi and hj, should be also close to each other. This idea
is usually denoted as local invariance [6], [36], [43], which
plays an essential role in designing of dimension reduction
algorithms.

In our GAE, we introduce the locality preserved constraint
to the auto-encoder. To achieve this goal, we add a graph
regularization as an additional cost to reconstruction cost as
follow:

1 m /,{ m m
J=— = &P = > oyl — b (2)
i=1

i=1 j=1

where m is the number of samples, 4 is the weight coeffi-
cient of graph regularization, v;; is the weight between input
samples x; and x;, and their corresponding representations,
h; and h;. Then we have the adjacency graph V = [v;; ]mxm,
which can be easily captured from the data distribution. As we
will introduce later, the adjacency graph V, which plays an
important role in the GAE, is a sparse matrix since we only
connect each sample to its few nearest neighbors. Hence we
normalize the graph regularization term by dividing the total
number of the samples as same as the reconstruction term.
More details about the designing of the adjacency graph V
will be discussed in Section III-C. Based on the idea of
local invariance, the graph regularization requires the lower-
dimensional representations keeping the same geometrical
structure as the original data. When two samples are close
in the original space, which means the weight of similarity
v;j is large, then the h; and A will be pushed to be closer
in the representation space. Ideally, the representation space
will be insensitive to small disturbance of the input with
graph regularization. Further theoretical analysis to reveal its
intrinsic influence to the hidden representation is presented
in Section IV.

The cost function then can be expressed as the following
matrix form:

1 . A
J=—IX—-X|%+=tr(HLH") 3)
m m

where 7r(-) denotes the trace of a matrix, L is the Laplacian
matrix with the form:

L=D,+Dy—-2V 4

D = [dl.lj]mxm and D, = [dl.zj]mxm are diagonal matrices
with df; = 3" ; v;; and djz.j = >, vjj. Then the second term is
calculated as follow:

D> vijlihi — hjl?
i
= ZhiTZl)ijhi —i—ZhJT-Zl)ijhj —ZZZhil)ijhj
i J J i i

tr(HDHT) +tr(HDHT) — 2tr(HVHT)
=tr(HLHT)

Denote 8§ = {W,b,c}, then we can optimize the auto-
encoder regularized with graph as (2) and get the solution
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as follow:
N o1 sy A T
0 = argmin(— || X — Xz + —tr(HLH")) %)
m m

The optimization problem given in (5) can be solved
by the stochastic gradient descent algorithm presented
in Section III-D.

B. Multi-Layer Auto-Encoders Regularized With Graph

The auto-encoder was proposed in the context of the neural
network, which is later applied to train the deep structure of
networks to obtain better performance in representation learn-
ing. We also implement the locally invariant constraint into
the multi-layer auto-encoders by adding the graph regularized
terms.

Use H; to denote the data representation of the ith layer,
and its corresponding reconstruction is denoted as X;. The
input data of the ith layer is the data representation of i — 1
th layer.! That is:

H; = f(W;H;_1 + b;)
Xi = f(W/ H; +ci)

Here, 6, = {W;, b;, c;}, and then the objective function of
the ith layer of the GAE is,

. 1 . yl
O = argmin(—||Hi-1 = X I* + —ir(HLH;))

It is worth to mention that all of the L for different layers are
generated from the original input data X, since we expect
the hidden representation is able to keep the same local
information as the original space.

This deep network can be trained with unsupervised layer-
wise pre-training for representation learning [4]. The output of
the last hidden layer is regarded as the learned representation
by GAE, which can be used for classification or clustering.
Usually, we fine-tune the deep network combined with the
classifier in classification tasks.

C. Graph Regularizer Design

As mentioned above, the performance of data representation
regularized with graph mainly relies on the design of the
adjacency graph V since it encodes the local property of
the data space. In this section, we introduce the design of
adjacency graph based on neighborhood information. We first
define the connected relationship between samples and then
calculate their weights of the connected edges.

For choosing connected edges, there are two kinds of
methods employed in our GAE, which are introduced as
follows,

o KNN-graph: If x; lies in x;’s k-nearest neighbor set, then

x; and x; are connected on the adjacency graph.

« e-graph: The data sample x;’s e-neighbor set contains all
the data samples whose distances to x; are less than e.
If x; lies in x;’s e-nearest neighbor set, i.e. [|x; —x;|| <,
there is a connected edge between these two data samples.

If i = 1, then the input data is the original input data X, and the training
process is back to single layer GAE.
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We denote x; € N(x;) if x; is connected to x; in the
adjacency graph. Note that we don’t constrain the adjacency
graph to be symmetric. In the case of KNN, the adjacency
graph can be asymmetric, while the e-graph is always con-
structed in symmetry. The asymmetry might help alleviate
the influence of unexpected connections. After choosing the
connected edges, we calculate the weight v;; depending on
the similarity between x; and x;. Based on the cost function
in (2), the connected weight should be large when the distance
between two samples is small. Then we employ two weight
calculation methods as follows,

o Binary: If x; € N(x;), then v;; = 1, otherwise v;; = 0.

« Heat kernel: If x; € N(x;), then

ki3
Lijj =€ 7
otherwise v;; = 0. Here ¢ is a user-designed constant.
v;j is also bounded in [0, 1] in this setting.

D. Model Learning

The layer-wise pre-training method proposed by Hinton and
Salakhutdinov [4] is widely used for training deep architec-
tures. For pre-training a single-layer GAE, our goal is to solve
the optimization problem in (5).

Since the graph regularization contains the weight matrix V
of training samples, it will be time-consuming to train all of
the data at the same time. Here we use stochastic gradient
descent for pre-training. The training algorithm is given in
Algorithm 1. For each training batch, we don’t select a random
set of data directly since the random batch cannot reveal the
global neighborhood information. Instead, we select a small
random set at first, and then add all their neighbor samples
into this set as our training batch.

In practice, it is time-consuming to loop over each sample or
each neighbor pair as shown in Algorithm 1. Here we provide
the gradient for each batch in matrix form, which means the
gradient of a batch can be calculated without looping. Let
Z® denote the total weighted sum of inputs in layer [, X®
denote the output of the active function in layer /, which means
x®O = f£z®)y for I = 2,3. Furthermore, denote
xM = Xpaten for uniformity.2 Since the cost J is composed
of reconstruction error and graph regularization, which can
be denote as J = Jree + Jgrapn, the gradients can also
be computed as two parts separately. Here we compute the
“error term” ¢0) = ;ZJ(,) at first, which corresponds to the
influence of Z to the error. For the reconstruction term,
55?0 is given as follow:

5B — —2(X(1) _ X(3)) . f’(Z(3))

rec
ofee = (Wod) e f1(Z?)

rec

where e denotes the Hadamard product. For the graph regu-

larization, the 55) aph is given as:
(3) —_
5graph -
02 = QXL+ LT)) e f'(Z?)

grap

2In our paper, the single-layer GAE means it has only one hidden layer.
Each single-layer GAE actually has 3 layers, where [ = 1,2, 3 denotes the
input layer, hidden layer and output layer respectively.
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Algorithm 1 Stochastic Gradient Descent for Pre-Training
Single Layer GAE

Input: Input dataset X, size m, randomly initialized
6 ={W,b,c}
Output: 0 = {W, b, c}

1 Calculate the weight matrix V' of all the input X;
2 while not stopping criterion do

3 Randomly choose m; samples from X and find their
my neighbors, denote these my + mo samples as
Xpatehs

4 Perform a feedforward pass on Xpgch, calculate the
cost J;

5 Set AW =0, Ab=0, Ac=0;
6 for sample i € Xpatcn do

7 Calculate the gradient of reconstruction term
AW,ee, Abpee and Acy.. with respect to
sample ;

8 AW = AW + m1+m2 AW,ees

9 Ab = Ab+ mle ———Abyecs

10 Ac= Ac+ Ty ——ACrec;

11 end

12 for neighbor pairs i,j € Xpaien do

13 Calculate the gradient of graph regularization

AW graph and Abg,qpn and Acgyqpn With
respect ro samples z' K

14 AW =AW + Am . AWgraph;
15 Ab = Ab + )\m +m2 Abgraph;

16 Ac= Ac+ /\m1 s Acg'r'aph;

17 end

18 W =W — AW,
19 b=0b— Ab;

20 c=c— Ac.

21 end

Then we have 6® = 52) + 5(mph and 6@ = 6%} +

Finally, the gradients is computed using the error term:

(3)
5graph

1
AW = ——— (D)X + (@) (x)T)
mi +my
Ab = !

— > 5
mi +my iy

1 3)

Ac = —— 0.
mi +my Zi U

where AW is calculated using 6 and 6 together since we

use tied weights. With the gradient computing in matrix form,

the GAE can be trained in relatively high efficiency.

IV. THEORETICAL ANALYSIS ON GRAPH
REGULARIZATION

It is intuitive to find in (2) that the graph regularization
aims to achieve the local invariance. Hence the hidden repre-
sentation will be insensitive to the small changes of the input.
In this section, we further discover the underlying theoretical
mechanism of our GAE. The relationships among GAE, CAE
and SAE are also investigated based on the theory.
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To find out the effect of the graph regularization on the
hidden representation, we conduct the mathematical analysis
in the case of the continuous space. Given a continuous
input sample x; € R™ generated from the probability density
function p(x;), we denote its corresponding neighbors as x;
with the conditional probability density p(x;|x;). Here we
use the e-neighborhood to describe the local property of any
given data points. If we have finite number of samples from
the neighborhood, they can form the graph as mentioned
in SectionlII-C. Without loss of generality, the connection
weight between each pair of data is set binary, i.e. v;; = 1
for connected neighboring pair x; and x;, and v;; = 0 for
others. Then the conditional density p(x;|x;) defined in the
e-neighborhood of x; is given as,

p(xi)1|‘xi7x_/\|<e
Z(x;)
where Z(x;) is the normalizing term to ensure that p(x;|x;)

is a valid probability density function. We can give the
conditional mean and covariance of x; based on p(x;|x;) as,

p(xjlx;) =

Hxjlx; = /ij(lexz')dxj

Tajly = /(xj — Mxjlx) (X — ﬂx_,-\x;)TP(xﬂxi)dxj

Then we can rewrite our graph regularization term as shown
in (6), as shown at the bottom of the next page.
Notice that we employ the Taylor expansion around /; as

hj =hi +Ji(x; —Xj)+0(0'2)

where J; means the Jacobian matrix of the encoder mapping at
the particular sample x;, then the approximate equation at third
line in (6) is obtained by omitting the second-order term o(c?).
For the equation on sixth line, we use the property of quadratic
form that the expectation of the quadratic form x” Ax is

ExTAx1 = tr[AS] + u" Ap

where x is a vector, 4 and X denote the expected value
and variance matrix of x respectively. Furthermore, Xy,
and (x; — pox;x)(xj — ,uxj|x,.)T are both positive-definite
matrices, then the Cholesky decomposition can be applied
so that Xy, + (X — ;1) (X)) — #x,-\x,»)T = L;L! on the
tenth line in (6), where L; is a lower triangular matrix with
positive diagonal entries. The derived result in (6) shows that
GAE tries to minimize the Frobenius norm of the weighted
Jacobian matrix. It is in accordance with our original intention
for learning local invariant representation.

A. Local Property in Input Space

Intuitively, the weight matrix L; encodes the local property
around the sample x;. Let’s denote R; = L,-Ll.T. To reveal
the local property of the input space, we diagonalize R; by
eigenvalue decomposition as:

Ri = QiNiQ]

where Q; includes the eigenvectors of R;, and A; is the
diagonal matrix composed of eigenvalues.
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Fig. 1.
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Eigenvectors of sampled points. Left sub-figure shows all of the two eigenvectors for the two-dimensional input. The eigenvectors are orthogonal

to each other since R is real positive. Right sub-figure shows the largest eigenvector on each sampled point. Red eigenvectors represent that the projections
of the sample points on horizontal axis are larger, while blue eigenvectors represent that the projections of the sample points on vertical axis are larger. The
elliptical contours corresponds to the two-dimensional Gaussian distribution, the sample points in each ellipse have the same value of the probability density.

Note the tenth line of (6), it tends to minimize the expecta-
tion of tr[J;L; LT JT'] over the input space. Denote each row
of Jacobian matrix as Jp;, one can see that the cost minimized
is equivalent to

tr[LLiL] I =" TR d]
p
=D QN O] T];
p

It means that the R; is propagated to each hidden unit by
projecting J,; on Q; with the weight «/A;. As Q; and A;
vary with respect to the input sample x;, the weight imposed
to the Jacobian matrix also varies from an input sample to
another.

To qualitatively uncover the local property contained in R;,
a simple numerical example is carried out for illustration. For
simplicity, we assume that our input data generated from a
two-dimensional Gaussian distribution, i.e. p(x;) ~ N(u, o)
with ¢ = [0, 01" and ¢ = [3,0;0,0.5]. With known input

data distribution, we can calculate the weighted matrix for any
given x;. The elliptical contours shown in Figure 1 present this
two-dimensional probability density.

We sample points x; from the continuous input space with
constant intervals along both axes. As for the conditional
probability density p(x;|x;), we set € = 0.3 in this example,
then we have

PO x—x;)<03

plxjlxi) = 70

The corresponding R; is calculated on these sampled points.
Figure 1(a) shows the eigenvectors of R; on each sampled
point x;. In this case, each R; has two eigenvectors since
its rank is 2. Figure 1(a) shows that the distribution on each
e-neighborhood of x; is different from each other, even in the
simple normal Gaussian distribution. Considering the sample
points lying on the major axis and minor axis of the ellipse, we
see that their directions of the eigenvectors are nearly parallel
to the horizontal axis and vertical axis. Although the sample

Jgraph =E [Uij||hi - hj||2]

_ / / Vi — (i + Ji i — x;) + 00 )P p (e i) pxi e
~ / / 1i G — x )P p e xi) pCr)dcidx

= //(xi —x)T Il TG = x ) p(xjlxi) p(xi)dxidx

= /tr[JiLiLiTJiT]P(xi)dxi

= E[IL13]

// (ijJl-T Jixj — 2xl-TJl-T Jix; +ij Jl-TJixi) p(xjlx))dx;p(x;)dx;

(tr JI; zx_,‘x‘.] F ty e I it — 260 I g+ x I Jixi) p(xi)dx;
[T . _ T T g (i — N

(”’ JJi Exj\xi] + (xz ,ijlx,-) J i (xz ﬂxj-lx,-)) p(xi)dx;
i T

(tr JIJ; Zx_/\x;] +tr [J,-TJl- (i = paj) (%7 — fxjs) ]) p(x;)dx;

T
tr|JT T <2x]-\xi + (i = pjln) (%0 — s 1) )]) p(x;)dx;

(6)
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points lying on the same ellipse have the same value of the
probability density, their eigenvectors are different and rotated
with respect to the sample location. On each sample point,
the eigenvectors present the directions on which each row of
Jacobian matrix, Jp;, should be projected.

To find out the impact of the eigenvalues, we preserve the
eigenvector corresponding to larger eigenvalue in Figure 1(b).
We use the red arrows to denote those eigenvectors with
larger projection on horizontal axis, and the blue arrows to
denote those eigenvectors with larger projection on vertical
axis. One can see that the major components of the preserved
eigenvectors are also different with respect to the sample
location. It is interesting to note the preserved eigenvectors
provide an estimation of the gradient on the input space.
Therefore, R; can tell the amount and the direction of the
variation in the input space encoded by its eigenvectors in Q;
and eigenvalues in A;.

B. Effect of Minimizing Graph Regularizer

To theoretically understand the variations in hidden space,
which is propagated by the Jacobian matrix from R;, we focus
on the first component in the ninth line of (6), tr[JiT JiZxjx 1
By circulating the terms in trace, we have

Jeov £ tr[J; Ex]-\xi JiT]

According to the uncertainty propagation theory, the term
within the trace is actually the covariance matrix of the hidden
representation for the conditional distribution given the input
sample x;, which can be denoted as follow:

Zh_/ lx; = Ji EX_/ |xi JiT

As can be seen, X |y, models the uncertainty in hidden space
propagated from the input space by Jacobian matrix. The trace
only care about the diagonal entries, leading to

Jcov - Z-lpizx]-\xijgi

P
= Z z"hpj Ixi
p

where X |y, is the uncertainty of hidden unit p. It means that
Jeop measures the sum of the variance in each hidden unit,
regardless of the covariance across hidden units. As a result,
an underlying mechanism of the graph regularizer is to enforce
most hidden units as constant as possible in the neighborhood,
so that the variance can be small. To achieve this goal, the
learned representation would be affected in two ways:

« Effect 1: For each hidden unit, its responses to most data
samples in the neighborhood lie in the saturation region,
as the variance in the saturation region can be small.

o Effect 2: The neighboring data samples are expected to
be saturated in the similar subset of hidden units, which
can lead to reduced variance.

To illustrate these two effects, we implement a toy example
on 72 images with each one representing a pose of the
toy duck. The images with similar poses are regarded as
neighboring samples and connected to form a graph. After
training a GAE with two hidden units on this dataset, the
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Fig. 2. Given 72 images where each represents a pose of a toy duck, they
are projected to a two-dimensional hidden space based on GAE. Each point
in the two-dimensional hidden space denotes an image sample, the images lie
in the surroundings correspondingly.

hidden representations are visualized in Figure 2. One can see
that all the samples are located in the boundary of the unit
square, indicating that all representations are with at least one
hidden unit saturated. This support the first effect found above.
The results also show the neighboring samples are near in
the hidden space, which means they share the same saturated
hidden unit. The differences between the neighboring samples
are stored in the remaining unsaturated hidden units. This
result supports the second effect found above. In addition,
the toy example also indicates that, although only the first
component in (6) is considered, the derived effect is definitely
supported by the experiment. These two effects are further
analyzed and explained in Section V.

C. Relationships to Other Auto-Encoders

The SAE regularized with sparse constraint is similar to our
GAE in the first effect that both of them try to obtain more
saturated units. Here a slight difference is that SAE keeps
the hidden units saturated in one side (approach to 0 due to
the sparse constraint), while GAE can reach saturation region
in two sides (either 0 or 1). The major difference between
these two auto-encoders occurs when considering the second
effect. The SAE does not impose the learned representations
to share the similar saturated units for neighboring samples.
This suggests that the SAE can have the different group of
saturated units for the neighboring samples comparing with
GAE. As a result, the local neighborhood of the input space
may not be preserved in the representation space.

CAE tries to minimize the following regularization on
Jacobian matrix:

| I <
J= =3 = R )
i=1 =l

Note that the regularizer of CAE can be included as a special
form in the derived regularizer in (6) when the weight Ll-LiT
is an identity matrix, /. It is not surprising that CAE actually
performs in the similar way that GAE does since both two
methods regularize the Jacobian matrix, so that the hidden
representation could be invariant to small perturbations in the
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input space. Thus the CAE also encourages the hidden units to
be saturated as the same as our first effect. However, CAE is
equal to assume that the local property at each sample point is
the same. As demonstrated in Figure 1 that even in the simple
Gaussian distribution, the local variation varies with respect to
the direction and the amount. By regularizing only J; Jl.T, the
local property in the input space is not accurately described.
As a result, the neighborhood structure in the input space
may be partially lost in the hidden space in CAE. How-
ever, compared with SAE which does not consider the local
invariance, CAE should perform better. It is further analyzed
experimentally in Section V.

In summary, with the help of local neighborhood descrip-
tion based on the data samples, it is possible for GAE to
intrinsically impose more structures of the representation space
from aspects of saturation and positions of saturated units in
local regions. The relationships and differences among GAE,
SAE and CAE will be further investigated in the following
experiments.

V. EXPERIMENTAL RESULTS

In this section, comparison experiments are carried out to
demonstrate the performance of our proposed method in both
clustering and classification tasks. In each case, our GAE and
other comparable state-of-the-art methods are evaluated within
the framework of embedded representation learning.

A. Clustering Experiment

Clustering is a key method for evaluating the quality of the
unsupervised learned features. In this section, we validate the
clustering performance of the proposed method in addition
with several comparison methods on two dataset, MNIST
and COIL20. MNIST is the well-known digit classification
dataset,> which has 70,000 digit images with 10 classes.
Generally, it is split into 50,000 training images, 10,000
validation images and 10,000 test images. Here we conduct
clustering experiments on the 50,000 training images. COIL20
is composed of 1440 images collected from 20 objects with
different views. Here all 1440 images with 20 classes are
considered for clustering, and the images are pre-processed by
PCA for all methods. In our experiments, we first implement
various dimension reduction methods on these two datasets,
then the k-means clustering is applied to the low-dimensional
representations learned by those methods. We use two metrics,
the normalized mutual information(MI) and accuracy(AC), to
measure the clustering performances. For fair comparison, the
dimension of learned representation through all algorithms are
set to be the same.

1) Evaluation Metrics: The normalized mutual informa-
tion (MI) is given in Cai et al. [8], which is a normalized
measure to evaluate the similarity of two sets of clusters. The
accuracy (AC) is used to measure the percentage of correct
labels compared to the ground truth label provided by the
dataset. Specifically, given a data sample x; with clustered

3 http://yann.lecun.com/exdb/mnist/index.html
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label ¢; and ground truth label g;, the accuracy is defined as

_ 2.;0(gi, map(c;))

N n

where n is the total number of samples, d(a, b) is a delta
function, which outputs 1 when a = b and outputs 0 otherwise,
map(c) is the permutation mapping function that maps each
clustered label c; to the best label provided by the dataset. For
the normalized mutual information, denote C and C’ as the set
of clusters obtained from the ground truth and the k-means.
We first compute the mutual information as follows,

> plei, c})

(e ()
cieC,cleC’ P(Cz)p(cj)

AC

MI(C,C) = plei, ;) log

where p(c;) and p(c;.) are the probabilities that a sample
selected from the dataset is belonging to cluster ¢; or ¢,
p(c,-,c;.) is the probability that a sample selected from the
dataset is belonging to both ¢; and c;.. Then, the normalized
mutual information can be computed as,

MI(C,C)
max(H(C), H(C"))
where H(C) and H (C') are the entropy of C and C’. When
M1 = 1, these two clusters are identical. when M = 0, these
two clusters are independent.

2) Comparison Methods: The methods we compared in our
clustering experiments is composed of two parts, one is the
locality preserving methods including LPP and GNMF, and
the other is the auto-encoder variants including the original
AE, SAE, CAE and the proposed GAE. A brief introduction
to these comparing methods are given as follows:

o LPP: Locality Preserving Projection (LPP) [44] is a linear
method for dimensional reduction. It also preserves the
neighborhood information of the input data space from
the adjacency graph.

o GNMF: Graph regularized Nonnegative Matrix Factoriza-
tion [8]. It combines the nonnegative constraint and the
locally invariant constraint, which can be formulated as
follow,

0= argmin | X — UVTII% +Atr(VILV)

MI(C,C) =

where the elements in both basis matrix U and represen-
tation matrix V are nonnegative, L is also the Laplacian
matrix in (4), and A corresponds to the strength of
regularization. In our experiments, the GNMF employs
the unsupervised KNN-graph with Heat kernel weights.
Those two coefficients, the number of connected neigh-
bors k and the weight of regularization A, are selected by
the optimal grid search.

o AE: The original basic auto-encoder with tied weights.
It is considered as a baseline of the auto-encoder variants.

o SAE: Sparse Auto-encoder (SAE) [29] is a frequently-
used model for building deep architectures. The sparse
constraint imposed to the auto-encoder is a very common
constraint choice in the field of auto-encoder. The formula
is given as follows,

0 = argmin ||X — X7 + 7 >_ KL(plp))
J
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TABLE I

CLUSTERING RESULTS OF COMPARISON METHODS ON MNIST, EVALUATED WITH NORMALIZED
MUTUAL INFORMATION (MI) AND ACCURACY (AC)

Class 5 6 7 8 9 10 Average

LPP MI 45.09 4+ 11.34  47.29 + 3.69 48.90 4+ 6.28 43.77 £+ 10.89 43.54 £+ 4.39 46.42 4+ 0.03 45.84

GNMF MI 6230 4+ 11.93  62.54 + 7.58 60.68 + 5.69 66.04 + 8.68 68.20 + 5.53 64.66 + 4.43 64.07

AE MI 47.89 £+ 9.97 41.86 + 7.94 43.18 4+ 5.49 41.51 4+ 548 42.36 + 1.83 40.35 + 1.03 42.86

SAE MI 52.46 + 9.44 51.33 £ 592 46.40 4+ 5.29 45.08 &+ 5.10 45.68 + 5.21 4297 4+ 2.07 47.32

CAE MI 59.45 £ 7.22 58.40 + 3.83  55.19 + 10.60 54.80 + 547 53.32 £ 1.60 49.44 + 2.77 55.10

GAE MI 70.41 + 11.48 69.97 + 7.93 71.52 + 4.97 68.94 + 5.40 69.49 + 2.13 66.26 + 2.97 69.43

LPP AC 58.63 £ 1145 57.10 + 2.82 55.88 £ 4.86 50.37 £ 8.79 47.58 + 3.74 50.06 £ 0.14 53.27

GNMF AC  69.72 £+ 12.10  72.08 &+ 9.00 67.66 £ 5.55 69.28 + 12.09 69.65 £+ 6.70 65.22 + 6.34 68.93

AE AC 69.90 £+ 8.28 56.88 £+ 6.74 54.35 £ 5.79 53.52 £ 6.01 52.62 £+ 4.80 49.64 + 1.34 56.15

SAE AC 73.12 £ 7.72 65.83 £ 4.92 61.91 £ 9.57 57.68 £ 5.73 57.56 £+ 6.40 52.86 £ 3.36 61.49

CAE AC 71.39 £ 8.26 7043 £ 6.27 6539 £+ 11.17 62.61 + 4.97 60.54 + 2.99 54.58 + 3.30 64.16

GAE AC 81.77 + 10.89  75.85 + 9.12 77.57 + 7.03 74.50 + 2.79 72.28 + 3.06 68.20 + 1.25 75.03

TABLE 11
CLUSTERING RESULTS OF COMPARISON METHODS ON COIL20, EVALUATED WITH NORMALIZED
MUTUAL INFORMATION (MI) AND ACCURACY (AC)
Class 6 8 10 12 14 16 20 Average

LPP MI 96.30 £+ 5.68 90.68 £ 3.70 91.95 £ 3.59 90.14 + 3.06 9437 +£291 89.88 £ 3.10 91.04 £+ 1.03 92.05
GNMF MI 91.78 + 8.24 89.64 + 3.94 92.44 + 3.96 89.04 +£ 385 9139 £5.19 8624 +5.64 83.21 + 2.01 89.11
AE MI 7291 £+ 7.97 74.01 £+ 8.13 7271 £ 9.16 73.73 £ 335 76.04 326 76.76 +£2.79 7531 £ 1.04 74.50
SAE MI 76.84 £+ 8.53 71.09 £ 9.20 77.00 £ 9.92 81.81 £394 77.12 £6.76  79.10 &£ 2.24  76.15 + 1.59 77.02
CAE MI 81.90 + 5.46 81.06 + 10.09 76.19 + 8.58 7772 £5.66  79.01 499 7530 + 428 76.58 £ 0.71 78.25
GAE MI 96.84 + 4.13 92.52 + 5.36 92.32 + 6.57 89.88 £ 4.13 94.75 + 1.08 89.94 + 3.10 90.14 + 0.48 92.34
LPP AC 94.21 £ 10.87 88.82 + 6.64 8297 £ 5.14 8245 £ 629 8595+ 837 79.24 £471  82.65 + 3.36 85.18
GNMF AC 91.76 + 8.59 87.01 £ 8.50 86.67 + 7.02 81.97 +£ 434 8550 £898 79.53 £ 7.29 71.53 4+ 3.55 83.42
AE AC 77.64 £+ 4.96 72.78 £+ 9.24 68.00 £+ 9.43 69.58 + 426  69.21 + 293 68.66 + 420 64.69 £ 3.09 70.08
SAE AC 78.89 + 8.22 71.15 £ 9.56 73.75 £ 10.04 77.27 + 6.11 7173 £ 737 7241 +£349 65.69 £+ 2.71 72.98
CAE AC 83.47 £+ 3.22 81.18 + 11.00  73.06 £ 10.79  72.66 + 4.05 7290 + 4.62 68.56 £ 490 66.81 & 3.45 74.09
GAE AC 97.36 + 3.75 88.82 + 9.79 88.03 + 10.59 85.07 £ 6.74 90.30 + 2.52 81.23 + 344 81.58 + 1.32 87.48

where 7 is the coefficient to regularize the strength of
sparse constraint, p is user defined sparsity coefficient
which is close to zero, p; is the average response of the
jth hidden unit for the whole dataset. The sparseness is
implemented by the KL distance regularization that the
average response p; is forced to be similar to the small p.
In our experiments, we set p = 0.05 and 7 is selected by
the optimal grid search.

o« CAE: Contractive Auto-Encoder. As introduced in
Section II, CAE is a state-of-the-art method for unsu-
pervised feature extraction, which tries to minimize the
average Jacobian norm of the hidden activations with
respect to the input. The formula is given as follow,

0 = argmin | X — X|1% + 7l ()II%

where # corresponds to the strength of regularization.
In our experiments, # is also selected by the optimal
grid search. Similar to GAE, CAE also tends to learn
a invariant representation by penalizing the sensitivity of
representation to the input.

o GAE: Graph Regularized Auto-Encoder. We use the
KNN-graph with Heat kernel weights the same as GNMF.
Our coefficients k and 1 are also selected by the optimal
grid search.

3) Clustering Results: In our experiments, we set the fea-
tures learned from all different methods to the same dimen-
sion. More specifically, For LPP and GNMEF, the dimension
of the learned representation is set to be the number of
classes n. of the input dataset directly. As for all auto-encoders

models, the network configurations for MNIST and COIL-20
are set according to the number of samples of each dataset.
Specifically, we use 3 hidden layers for MNIST and the
network architecture is 784-500-500-n.. For COIL-20, we use
2 hidden layers and the network architecture is 1024-200-n..
For all methods, the k-means is applied to the n, dimensional
representation for clustering, where the data samples are
partitioned into n. clusters.

To randomize the experiments, we randomly choose a series
of subsets with different number of classes n. from those
two datasets to learn the representation. For each given n.,
we repeat the random selection 5 times and then average the
clustering results. The average clustering results as well as
standard deviation on different subsets under various n. of
those two datasets are shown in Table I, II. For both tables,
the first row is the number of classes n. of the subsets, and
the column of the tables shows the average performances on
the five random subsets with the n. classes. Furthermore, the
overall average clustering result of each dimension reduction
method on all of the subsets is shown in rightmost column of
the tables.

Table I and Table II suggest that the proposed GAE achieves
superior clustering performances on both MNSIT and COIL20.
Comparing LPP and GNMF with GAE, we can find that all
these methods demonstrate competitive results on COIL20
with consideration of the local preserving. However, the
performances of LPP and GNMF on MNIST are relatively
lower due to the limitation of their shallow architectures. The
superiority of GAE on MNIST comparing to LPP and GNMF
demonstrates the expressive power of the deep architecture.

Authorized licensed use limited to: Zhejiang University. Downloaded on February 24,2021 at 05:30:39 UTC from IEEE Xplore. Restrictions apply.



2848 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 6, JUNE 2017

] W, 1
° R S N
! ¥ 2
) » 0 Q.:{/" \‘k . :{03 , ) 2
¢ o . k ;
I( X ’7 63 é o ."’(: o :(3 g
. 10
Q ‘, g 6 . 4 Ryt cou
o o £ . . > a4 : 2
14
15
© o # oA N 5 : 2
‘ Q \". 3 ‘L}; ‘L‘ . T
¢ e *
(@ (b) (©
% v, 2
~ 3
A jac e 4
{; i J \" .N"‘.‘m . ."' P adlid g
. " o » b"“' e N é
P Y N o f— 2 Fo 10
s Q) N e ’ < 1
“ F 4 d & 12
‘.‘“‘ » ' 3 o ( ﬁ
- ! » N 15
;“ 7 ‘e N 16
7
-*'.s 18
AV S A »
(d) (©) ®

Fig. 3. Representations learned by different methods on COIL20, reduced to two dimension using t-SNE. Each figure contains the full COIL20 image dataset

with 1440 samples, where different color denotes different class.

It is to be noted that the performance of LPP on MNIST
degenerates more considerable with its linear structure, while
GNMF is more stable on both MNIST and COIL20, demon-

TABLE III

SATURATION RATIO OF REPRESENTATIONS LEARNED
FrROM MNIST AND COIL-20

strating the effectiveness of simultaneously learning recon- MNIST(%)  COIL20(%)
struction and regularizing the local property. For comparison S/?& gg:zg 3?3;
between auto-encoders, SAE, CAE and GAE all perform CAE 92.11 80.38
better than the original AE intuitively. Furthermore, GAE also GAE 82.80 88.97

gives better results than SAE and CAE, demonstrating the
effectiveness of the proposed GAE.

4) Saturation Analysis: To validate the first effect that the
graph regularization encourages the hidden units to approach
the saturation region, we analysis the saturated ratio of the
learned representation of different methods. As LPP and
GNMF have no saturation region, they are not taken into
consideration. We define the saturation unit the same as
Rifai et al. [13], which considers a unit is saturated when
its activation is below 0.05 or above 0.95. Without loss of
generality, we analysis the saturated ratio of the representations
learned from the full dataset, where we have n., = 10 for
MNIST and n, = 20 for COIL20. In Table III, we present
the mean saturated ratio of all samples on all hidden units,
including all hidden layers.

The results in Table III provide quantitative support to
our analysis that the GAE encourages the hidden units to
be saturated. In addition, SAE and CAE also learn saturated
representations with their regularizations, while the original
AE has a low saturated ratio. Correspondingly, all SAE,
CAE and GAE outperform the original AE in Table I and
Table II. It is suggested that the saturated ratio can partially
reflect the representation learning performance. However, the

clustering performance is not exactly proportional to the sat-
urated ratio. We use the following visualization experiment to
demonstrate that our GAE gains the advantage with its second
effect.

5) 2D Visualization of Learned Representations: To further
explain the advantage of our graph regularization, we visualize
the representations used in the saturation analysis in 2D
space. For both MNIST and COIL20, the learned represen-
tations are reduced to two dimensions based on t-SNE [45],
which is a dimension reduction technique widely employed
for high-dimensional data visualization. As shown in both
Figure 3 and Figure 4, the qualitative results validate the
second effect that GAE regularize the neighboring samples
having similar hidden activations.

Specifically, Figure 3 illustrates representations learned on
the full COIL20. Each image in COIL20 is represented as
a 2D point with different color denoting different class, and
all 1440 samples are presented in this figure. As can be
seen, the qualitative results are consistent with the quantitative
results in Table II. LPP, GNMF and the proposed GAE
outperform the other methods, demonstrating the effectiveness
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Fig. 4.
chose from MNIST, where different color denotes different class.

of the graph regularization. For SAE and CAE, it is suggested
that samples with different classes are more likely to be
mixed in their representation space. The rationale is that
SAE only explicitly regularizes the saturated ratio with the
sparsity regularization, but does not require the neighboring
samples to be saturated in the similar subset of hidden units
as the second effect of the GAE. As for CAE, it regularizes
the Jacobian matrix on each sample point equally, while the
GAE propagates the local property in the input space to
regularize the variation in hidden space and leads to better
representations.

In Figure 4, the representations learned on the full MNIST
are also visualized based on t-SNE, where 10,000 samples
are randomly chosen for visualization in this figure. It also
supports the results in Table I that GNMF and GAE achieves
better performances on MNIST clustering. The advantage of
GAE over other auto-encoders is similar as in Figure 3,
where the neighbor samples are projected to similar hidden
representations according to the second effect. It is to be
noted that CAE regularizes the representation to lie on the
manifold. However, in some cases samples from different class
are contracted to the same manifold. Thus they are mixed up
and the clustering performance is decreased, which reflects
our theoretical analysis that the structure of the neighborhood
may be lost in CAE. For GAE, the contraction property is
also revealed in the figure because of the similarity between
CAE and GAE, while the local connectivity is preserved at
the same time.

Representations learned by different methods on MNIST, reduced to two dimension using t-SNE. Each figure contains 10,000 samples randomly

B. Classification Performance

In addition to the clustering experiment, we also conduct
the classification experiments to validate the effectiveness
of the proposed algorithm. The dataset we use for classi-
fication including MNIST and CIFAR-10. CIFAR-10 is a
benchmark dataset containing 10 classes of small objects with
60,000 RGB images. Here COIL20 is not considered, as this
dataset is relatively simple and its classification performances
between different methods are very close. For comparison
methods, all dimension reduction methods in the clustering
experiment are considered except for GNMF, as GNMF only
models the decoder and it is not clear to inference the
features on test dataset given the learned basis on the training
dataset. We also present the state-of-the-art performances on
both MNIST and CIFAR-10 at the time of writing as a
reference [46], [47]. Note that they are both obtained using
convolutional neural networks, which is out of the scope of
this paper.

1) Classification Results: The classification results on
MNIST and CIFAR-10 are given in Table IV. Specifically,
for classification of MNIST, we use the generally split config-
uration where there are 50,000 images for training, 10,000
images for validation and 10,000 images for test. To be
consistent with the network architecture used in the clustering
experiment, we use two hidden layers with 500 units for
feature learning and a softmax classifier is built on top of
the feature for classification, which means the model structure
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Fig. 5. 200 filters learned by different methods on patches of CIFAR-10. (a) LPP. (b) AE. (c) SAE. (D) CAE. (e) GAE.

TABLE IV
CLASSIFICATION ERROR RATES ON MNIST AND CIFAR-10

MNIST(%) CIFAR-10(%)
LPP 29.87 58.50
AE 1.29 54.35
SAE 1.21 33.28
CAE 1.18 33.38
GAE 1.07 32.75
Ranzato et al. [47] 0.64 -
He et al. [48] - 7.77

is 784-500-500-10. We employ the unsupervised layer-wise
pre-training to initialize the two hidden layers of the stacked
auto-encoders. Then the stacked auto-encoders and the soft-
max classifier are fine tuned together by the backpropagation
with dropout. The parameters of the fine tuning are selected
based on the best performance on the validation dataset.

For classification on CIFAR-10, we adopt the same frame-
work suggested in [48], where different feature learning meth-
ods are employed for unsupervised feature extraction and
then a softmax classifier is trained to classify the unsuper-
vised extracted features. CIFAR has 50,000 training images
and 10,000 test images with size 32 x 32 x 3. We split
the 50,000 training images into 45,000 training images and
5,000 validation images. For unsupervised feature learning,
we randomly extract 160,000 patches with size 8 x 8§ x 3
from the training images and learn representations on them.
As suggested in [48], we perform local contrast normalization
(substract the mean and divide by the standard deviation) to
each patch, followed by the whitening process which aims to
reduce the feature correlation. In the context of dimension
reduction representation learning, all comparing methods
learn a 150-dimension representation on the pre-processed
patches with the dimension of 192. Note that we use the
single-layer architecture for all auto-encoder variants in this
experiment, then the network configuration is 192-150. Each
192-dimensional vector in the weight matrix can be regarded
as a filter with size 8 x 8 x 3. After unsupervised training of the
single-layer architecture, all the 150 filters are applied to the
full images using convolution. Thus each image is represented
as a 25x25x 150 feature map. The sum pooling is then applied
to the quadrants of the feature map, generating the pooled
feature map with size 2 x 2 x 150. Finally, it is stretched to a
vector of 600 dimension to present each image.

As can be seen in Table IV, our GAE achieve competitive
performance compared to the locality preserving methods

and auto-encoder variants on both MNIST and CIFAR-10.
In addition, it is to be noted that the performance of LPP
drops significantly on MNIST for two reasons. One is that LPP
has much smaller capacity due to its shallow architecture, the
other is that features extracted using LPP are classified directly

without the fine-tuning scheme in auto-encoders.
2) Visualization of Filters: We illustrate the filters learned

by LPP and variants of auto-encoders as in Figure 5, where all
150 filters are visualized. The filters of LPP are displayed in
the descending order of eigenvalues. The results demonstrated
that AE can only learn filters with meaningless shapes since
no additional regularizer is applied to constrain its hidden
space. SAE, CAE and GAE can all lean filters with edges
and colors which are believed to be useful for capturing
locality features. This explains why these variants can give
better classification results over the original AE. Besides, the
edge-like filters are learned by CAE and SAE because of
the encouragement of saturation in hidden space. The similar
filters learned by GAE also reflect the first effect derived
by our theoretical analysis. For the filters learned by LPP,
the shape reflects more global features as same as PCA,
which cannot lead to good generalization performance without
further fine tuning. As can be seen, with the same graph
regularizer, auto-encoder enables learning of edges while
LPP cannot. This is also a complement that GAE bring to
the conventional manifold learning methods.

We also try to understand the impact of the hyper-
parameters of GAE by visualizing the changing trend of the
learned filters. Firstly, we fix the number of the neighbors
k = 3 and vary the 1 in [0, 1, 3, 5, 10, 30, 100, 300] as shown
in Figure 6. Secondly, Figure 7 shows the learned filters when
k varying in [0, 1,2,3,5, 10, 15, 20] with 2 = 3. For each
different parameter setting, we randomly choose 16 filters from
the 150 filters for visualization.

Seen from Figure 6, when 4 = 0, the GAE degenerates
to the original AE, and the learned filters are with
meaningless shapes. As /A increases, the edges and color
information gradually emerges from the learned filters, leading
to the increasing performance of GAE. This is inspired by the
effects of GAE theory. In this interval, the first effect enables
the learning of edge-like filters, while the second effect keeps
the local property of the data space in an appropriate size.
When A4 gets larger, i.e. when the graph regularization gets
stronger, the neighboring samples are enforced to be over-
similar in the representation space, and the representations
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Fig. 7.
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would be over-saturated. As a result, only the average of the
data can be captured, losing the high frequency information.
Visually, the edge-like filters gradually become more global:
the edge blurs and the region of edge stretches, which indicates
the beginning of worsening of performance. When A con-
tinuous growing, some filters becomes random filters. These
random filters are different from ones when A = 0. They have
much larger magnitudes. As a result, all data will be mapped
into the same saturated regions and give very small variances
in each hidden units, regardless of the reconstruction cost.
Obviously, this is an extreme situation of graph regularizer,
losing all discriminative information. As can be seen, this trend
is driven by the two effects derived from the theory. When 1 is
fixed and k becomes larger, the graph becomes more densely
connected, leading to an over-sized neighborhood. Thus more
data in this neighborhood are required to be with similar
representations to keep the hidden space with small variances.
As a result, the trend for the visualization of filter with respect
to hyper-parameter k can be predicted to be similar with that of
hyper-parameter 4 based on our theory. The results in Figure 7
also validates our hypothesis that the filters become to show
more global features when k grows.

In this experiment, we introduce the relationship between
the theoretic underlying mechanism of the graph regularizer
with the hyper-parameter and the potential performance. This
gives us a very directive method for evaluating the perfor-
mance of the given hyper-parameters, especially the guidance
for tuning of the hyper-parameters to better results. This is
an advantage of GAE over the LPP for manifold assumption
induced representation learning. In relatively large intervals for
A and k, one can see that the filters are learned with edge-like
shapes, guaranteeing a robust performance of the method.

VI. CONCLUSION

In this paper, we propose a novel graph regularized auto-
encoder, which can learn a locally invariant representation
of the images. A theoretical analysis is carried out to reveal
the intrinsic impact of the graph regularization, which is a
constraint on the weighted Jacobian matrix of the encoder
mapping. We also reveal the underlying effects imposed to
the representation space by minimizing the weighted Jacobian

Filters learned by GAE with k = 3 and varying A, 16 filters are randomly chosen for visualization. (a) A = 0. (b) A =1.(c) A =3. (D) A = 5.

I'II HI T lhlll!
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(e) () (® (h)

Filters learned by GAE with 1 = 4 and varying k, 16 filters are randomly chosen for visualization. (a) k = 0. (b) k = 1. (¢c) k = 2. (D) k = 3.

matrix. The relationship between the proposed graph regu-
larized auto-encoder with other auto-encoder variants is also
discussed based on the theoretical analysis.

Experimental results on image clustering and classification
show our method provides a superior option for image rep-
resentation. Additional visualization results are presented to
qualitatively demonstrate the effectiveness of the graph regu-
larization, and validate our theoretical analysis. The influence
of the hyper-parameters is also investigated based on the
visualization experiments. The future works may focus on
investigating the deeper architectures with graph regulariza-
tion, imposing the graph regularization to the convolutional
networks is also possible future works.
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