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Abstract— Scene classification is a fundamental perception
task for environmental understanding in today’s robotics. In
this paper, we have attempted to exploit the use of popular
machine learning technique of deep learning to enhance scene
understanding, particularly in robotics applications. As scene
images have larger diversity than the iconic object images, it is
more challenging for deep learning methods to automatically
learn features from scene images with less samples. Inspired
by human scene understanding based on object knowledge,
we address the problem of scene classification by encouraging
deep neural networks to incorporate object-level information.
This is implemented with a regularization of semantic segmen-
tation. With only 5 thousand training images, as opposed to
2.5 million images, we show the proposed deep architecture
achieves superior scene classification results to the state-of-the-
art on a publicly available SUN RGB-D dataset. In addition,
performance of semantic segmentation, the regularizer, also
reaches a new record with refinement derived from predicted
scene labels. Finally, we apply our model trained on SUN RGB-
D dataset to a set of images captured in our university using
a mobile robot, demonstrating the generalization ability of the
proposed algorithm.

I. INTRODUCTION

Today’s robotics face many perception challenges such
as scene classification (Figure 1), semantic segmentation,
object recognition and detection. For object-level tasks, a
series of new performance standards are set with the recently
successful deep Convolutional Neural Networks (CNN) [1]–
[3], while the performance on scene-level perception based
on deep CNN did not reach the same level of success before
the work of Place-CNN [4]. As pointed out in [4], scene-level
task is more challenging for feature learning due to the larger
diversity of scene images compared to iconic object images.
For Place-CNN, it overcame this diversity and reached state-
of-the-art by training on 2.5 million scene images. However,
it is very expensive to collect and label training images
in such a large scale. Furthermore, enhancing the perfor-
mance by increasing the number of training samples is not
preferable in most robotic applications, especially for those
tasks with insufficient samples. In this paper, we focus on
constructing a scene classifier with competitive performance,
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Fig. 1. Scene classification demonstration. The examples are captured in
our university using the mobile robot. Our SS-CNN trained on SUN RGB-D
dataset gives the predict labels below each image, without retraining for the
completely new environment. Labels in black means correct classification.
Two misclassified image are given with labels in red, while the predicted
labels are in accord with human recognition to some extent.

while automatically learning feature with less amount of
training images using the deep CNN.

It is more likely that the human beings understand scene
classes mainly according to the object-level information, as
scene classes are naturally defined at a higher level than
the objects. For example, we incline to recognize the scene
as “bedroom” as we find objects “bed” and “night stand”
in it. Intuitively, understanding the scene classes involving
object-level information would suppress the large diversity
of scene images and lead to better generalization ability. This
hypothesis is validated with a baseline experiment by using
object existence as feature vector to classify the scene classes
— with a much lower dimension, the object existence feature
allows a similar performance to the Place-CNN features.
This result reveals that object-level information has the
potential to improve scene classification. Inspired by human
way of scene classification, we encourage the deep CNN to
understand objects in early stage. Specifically, we develop
a scene classification model with regularization of semantic
segmentation based on the well-known CNN architecture,
Alexnet [1], named SS-CNN. An example of our model
structure is shown in Figure 2, where the features learned
for scene classification in SS-CNN automatically involve
object-level information. On SUN RGB-D dataset [5], we
train our SS-CNN and show it significantly outperforms
the original Alexnet, which further validate our hypothesis
that the semantic regularization enhances the generalization
ability. Besides, SS-CNN achieves superior results compared
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Fig. 2. An example architecture of the proposed SS-CNN, which is composed of a main branch for scene classification and a regularizer branch for
semantic segmentation. The semantic regularization is imposed to the beginning 4 layers in this figure. The main branch outputs 1-D probability prediction
for each image, where the regularization branched outputs 2-D probability prediction for each pixel. A refinement process denoted as the dashed orange
line is implemented in the test process to promote the performance of the semantic segmentation using the predicted scene labels.

to the state-of-the-art Place-CNN, which is also based on
Alexnet but gains its power with 2.5 million training images,
while SS-CNN is only trained with 5 thousand images.

In addition, we develop a refinement method for semantic
segmentation with the predicted scene classes, which is
based on scene-object co-occurrences learned from training
data. For instance, knowing the scene as a “bedroom” could
prevent us from misclassifying the object “cabinet” as a
“fridge”. As a result, the performance of semantic segmenta-
tion also reaches the state-of-the-art on SUN RGB-D dataset.

After training and validation on SUN RGB-D dataset
collected in the US, we further apply our SS-CNN to a
mobile robot to classify scenes in a building of our university,
in Australia. The mobile robot and some RGB images with
its predicted results are given in Figure 1. The promising
performance of SS-CNN in the completely new environment
reveals its potential capability in robotics applications.

The remainder of the paper is organized as follow: Sec-
tion II gives a review of related works. The proposed model
and refinement method are given in Section III, and the
experimental results are shown in Section IV. Finally, we
conclude the paper with future direction of research in
Section V.

II. RELATED WORKS

Some previous works have demonstrated that interaction
between scene and objects has the capability to promote each
other [6]–[10]. The typical idea is to build the relationship
between scenes and objects using a graphical model such as
Markov Random Field or Conditional Random Field [11].
Though these works have achieved superior results, they are
based on hand-crafted features, which means the feature ex-
traction and classification in these works are not in a unified
optimization framework. Compared to these works focusing
on simultaneously labeling, our work is more close to Object
Bank [12] since we focus on regularizing scene classification
with semantic segmentation. Object Bank proposed a high-
level representation for scene classification by encoding the

images with combination of a large amount of object detec-
tors. However, the feature extraction and scene classification
in Object Bank are still optimized separately, and it requires
pre-training a large number of object detectors. Recently, the
superior results achieved with deep learning methods suggest
that learning features with a fully trainable architecture may
be a better choice. In this paper, we implemented the scene
classifier using a fully trainable deep architecture with a
single semantic segmentation branch encoding all object-
level information.

As for the conventional deep learning methods, the most
successful CNN model in scene classification is Place-
CNN [4], which is trained on 2.5 million labeled images
belonging to 476 scene classes using the well-known archi-
tecture Alexnet [1]. Before [4], the performance of CNN on
scene classification was within the range of performances of
some hand-crafted features based implementations [13]. As
pointed out in [4], one reason of the relatively poor result
on scene classification of CNN is due to the larger diversity
of scene-centric images compared to object-centric images,
which means scene classification has higher requirement on
generalization ability. A further investigation to the Place-
CNN [14] shown that object-level information emerges from
the scene-centric trained model, which also gave the inspira-
tion that the CNN learns to classifier scenes by understanding
object-level information. By explicitly encouraged the CNN
to classify scenes through understanding of object existence,
we developed a scene classifier also based on Alexnet and
achieves better generalization ability than Place-CNN with
only 5 thousand training images.

To the best of our knowledge, considering of multiple
tasks is less exploited in deep learning methods. In DeepID-
Net [15], a refinement scheme is conducted to refine the
object detection using the image classification result. More
specifically, they introduced another separated network for
image classification and concatenated the estimated image
probability with the estimated object probability for a further
classification, which means the information of two tasks

2319

Authorized licensed use limited to: Zhejiang University. Downloaded on February 25,2021 at 05:53:55 UTC from IEEE Xplore.  Restrictions apply. 



are only combined after independent training, instead of
simultaneous training as implemented in this paper.

III. MODEL DESIGN

With the aim of learning scene features involved object
information, we construct our SS-CNN for scene classi-
fication with regularization of semantic segmentation. In
this section, the network architecture of our SS-CNN is
introduced in detail, followed by the model learning and
input construction. On top of that, we implement refinement
for semantic segmentation with the predicted scene labels.

A. CNN for scene classification with semantic segmentation
regularization

Notation. We first clarify the symbols used in this paper.
Assume there are Ms scene classes in scene classification
and Mo object classes in semantic segmentation. Let’s denote
the data structure of a single sample as (X,ys,Yo), where
X ∈ RH×W×C is input image with H as height, W as width
and C as number of channels, ys ∈ Z1×Ms is the ground
truth of a scene label encoded in 1-of-K encoding scheme,
i.e. yks = 1 if X belongs to kth scene class, otherwise
yks = 0. Yo ∈ ZH×W×Mo is the ground truth of semantic
segmentation label having the same height and width with
X . Analogously, yijko = 1 denotes the pixel (i, j) belonging
to kth object class.

Network architecture. For model construction of SS-
CNN, a conventional CNN model is employed as the basic
model to predict the scene classes with input pair (X,ys).
Then the major contribution of this paper is to add another
fully convolutional branch [16] to the basic model, with the
aim of estimating Yo for semantic segmentation. The fully
convolutional branch can be added to the main branch on
arbitrary layer, we further define SS-CNN-Rn to denote the
different configurations of SS-CNN as follow:

Given an original CNN for scene classification with Nl

layers in all, denote SS-CNN-Rn as the SS-CNN with the
previous n layers regularized by semantic segmentation, n
is ranging from 1 to Nl.

In this paper, we take the well-known Alexnet archi-
tecture [1] as our main branch for scene classification. In
Alexnet, we have Nl = 8 and there are 8 invariants of SS-
CNN. The detailed network configuration of some typical
networks are given in Figure 3.

Intuitively, how many layers are regularized by semantic
segmentation would influence the performance of SS-CNN.
If n is small, then the regularization is only imposed to a few
layers of the scene classification. Considering the extreme
case with n = 0, then two separate neural networks are con-
structed for scene classification and semantic segmentation
respectively. As n getting larger, the semantic segmentation
regularizes more layers in the main branch.

It is to be noted that the main branch keeps its original
structure from SS-CNN-R1 to SS-CNN-R5 with 5 convolu-
tional layers and 3 fully connected layers. Beginning from
SS-CNN-R6, the structure of the main branch is slightly
different, as the fully connected layers in main branch are

also casted into convolutional layers one by one. When
n = 8, fc6 and fc7 are both casted into convolutional
layer, thus two additional fully connected layers are built for
scene classification.

Model learning. As can be seen from the SS-CNN
architectures, the loss function of our SS-CNN is composed
of two parts, one is the loss of scene classification and the
other is the semantic segmentation. In this paper, we use
the multinomial logistic loss on a softmax layer. The loss
function of scene classification is:

Lscene = −
Ms∑
k=1

yks log(p
k
s) (1)

where pks is the probability of estimating X in class k, which
is obtained with the final softmax layer taking f as input:

pks =
ef

T θk∑Ms

i=1 e
fT θi

(2)

Analogously, we can obtain the probability of each pixel
pijko in semantic segmentation branch and define the loss
function as:

Lobject = −
∑
i

∑
j

Mo∑
k=1

yijko log(pijko ) (3)

Then the loss of the whole network is composed of these
two losses as:

Lss = Lscene + αLobject (4)

where α is the weight of the regularization term Lobject.
Notice that each image is corresponding to a single cost for
scene classification, while the cost of semantic segmentation
is summarized over all pixels (not normalized in our model).
In this paper we choose α = 1/1000 based on experiments.

We use stochastic gradient descent with momentum for
model training. Note that given SS-CNN-Rn, only weights
from layer 1 to layer n are regularized with semantic
segmentation, i.e. tuned with respect to the partial gradient
of Lss. From layer n+1, the weights in scene classification
branch is tuned with only respect to Lscene, and the same
for the semantic segmentation branch as being tuned with
respect to αLobject.

Depth representation. Depth information is important in
scene understanding. Many successful models are built on
RGB-D inputs captured by the affordable RGB-D sensors
such as Kinect and X-tion, especially in indoor environ-
ments [17], [18]. In this paper, we also explore the effective
ways to encode the depth information in deep CNN.

The most direct way of considering depth information in
deep CNN is to add a depth channel in the input layer. The
depth image we use is linearly rescaled to [0, 255], which is
in the same range as the RGB image. Since depth image
only provides information of distances, we also consider
using the knowledge of normal vectors. For estimation of
normal vectors, the depth image is first applied to a bilateral
filter for smoothing. And then the smoothed depth image
is transformed into a point cloud with the camera intrinsic
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(a) SS-CNN-R6

(b) SS-CNN-R8

Fig. 3. Examples of SS-CNN-Rn with n = 6, 8. Note that the structure in Figure 2 is SS-CNN-R4. The main branch in SS-CNN-R4 has the same
structure with Alexnet with 5 convolutional layers and 3 fully connected layers, while SS-CNN-R6 have 6 convolutional layers and 2 fully connected
layers. SS-CNN-R8 is more special with its 8 convolutional layers and 2 additional fully connected layers in the main branch.

(a) RGB Image (b) Depth Image (c) Normal Vector

Fig. 4. An example of the RGB image in SUN RGB-D dataset, with its
corresponding depth image and normal vector image.

parameters, on which normal vector is estimated. The normal
vector is also rescaled to [0, 255] and represented in an image
with 3 channels. An example of the RGB image and its
corresponding depth image and normal vector are given in
Figure 4.

In this paper, we encode the depth representation as a
combination of depth image and normal vector image, and
then the RGB-D input has 7 channels for each image as
shown in Figure 2.

B. Refinement of semantic segmentation with scene classifi-
cation

Intuitively, scene classes can provide prior information
about object occurrences. This idea could be used to further
refine the performance of the semantic segmentation. For
example, if a robot recognizes an environment correctly as
a bedroom, then it is fair to expect a bed in the image,
rather than a shower curtain. Based on the architecture of
SS-CNN, we can conveniently incorporate the estimated
scene probability to refine the performance of semantic
segmentation.

As pointed out in (2), the softmax layer generates the
estimated probability of scene classification. Let’s denote

ps ∈ R1×Ms = [p1s, · · · , pMs
s ] as the probability vector. Sim-

ilarly, the probability of semantic segmentation is denoted
as po ∈ RH×W×Mo . Then the refinement process can be
represented as follow:

pso = ps ×Wso

p̃o = pso ⊗ po
(5)

where Wso ∈ RMs×Mo is the refinement matrix learned
from training data, pso represents the prior probability
of objects learned from estimated scene classes, which is
propagated to po through multiplication with broadcasting
(denoted as ⊗ in this paper), i.e. broadcast the Mo values
in pso to each score map in po respectively. The refinement
process is illustrated in Figure 5.

For the refinement matrix Wso, it is constructed based
on the scene-object co-occurrence distribution in training
dataset. Rather than directly deciding the refinement matrix
from the object frequency, we propose to construct Wso in
a way similar to term frequency-inverse document frequency
(tf-idf). Inspired by the inverse document frequency term in
tf-idf, how important an object is in a scene is also con-
sidered. For example, the object classes “wall” and “floor”
are most common ones and almost appear in every scene.
When we want the robot to finish a certain task such as
“find the bowl in the kitchen”, these common classes are less
meaningful in the context of semantic segmentation, while
the training process actually pays more attention to these
classes because of their large amount of training samples.

Let’s first construct the original term frequency matrix f ∈
RMs×Mo , where fij denotes the count of object j occurs in
scene i. And then the term frequency is normalized as:

tfij = log(1 + fij) (6)
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Fig. 5. Illustration of refinement process.

In this paper the inverse document frequency is con-
structed as:

idfj =
Ms∑Ms

i=1 tfij
(7)

Different from the common choice which constructs the idf
term taking the number of scene classes containing the jth
object as denominator, we measure the idf of each object
as the inverse of mean term frequency of this object. For
example, in the SUN RGB-D dataset, both classes “floor”
and “bag” appear in almost of the scenes in training dataset,
but the mean term frequency of “bag” is apparently smaller
than that of “floor” as the appearance times of “bag” in some
scene classes is tiny. Thus we still regard the “bag” as the
object we need pay attention to.

Finally, the wij in weight matrix Wso is constructed by
the multiplication of these two terms with normalization as:

wij = log(1 + tfij × idfj) (8)

where i = 1, · · · ,Ms, j = 1, · · · ,Mo. If wij = 0, we set
wij = 1e−2 in case that the training dataset cannot exactly
represent scene-object occurrences of the test dataset.

IV. EXPERIMENTS AND RESULTS

We first train and validate our SS-CNN on the SUN RBG-
D dataset [5], which is an indoor dataset with 10335 RGB-D
images in all. In [5], the benchmark of scene classification
is conducted on a subset of the dataset, which is composed
of 19 scene classes with more than 80 samples, while
the benchmark of semantic segmentation is conducted on
the whole dataset with 45 scene classes. For these two
tasks, their corresponding datasets are named as S19 and
S45 respectively as described in Table I, where the split
configuration is provided in the toolbox of SUN RGB-D
dataset1. To make a fair comparison, we also validate the
scene classification performance on S19 and validate the
semantic segmentation performance on S45 in this paper. For
both cases, SS-CNN is trained with only the training images
in SUN RGB-D dataset, without other data augmentation.

On top of the model trained and validated on SUN RGB-
D dataset, we experimentally test the performance of SS-
CNN on a set of test images collected in a building of our
university using a mobile robot.

1http://rgbd.cs.princeton.edu.

TABLE I
SUMMARY OF SUN RGB-D DATASET.

Task Dataset #Train #Test #All
Scene classification S19 4845 4659 9504
Semantic segmentation S45 5285 5050 10335

A. Experimental setup

During the training process, we resize both input im-
ages and semantic segmentation ground truth to 210 × 158
for computation efficiency. Let’s denote the resized image
datasets as Ŝ19 and Ŝ45 respectively.

To predict the pixel-wise labels in the semantic segmen-
tation branch, we construct our SS-CNN based on a slightly
modified Alexnet. The receptive field of the original Alexnet
is 224 × 224, with pixel stride 32. Intuitively, large stride
leads to coarse semantic segmentation results. Smaller stride
is obviously required for semantic segmentation in our work
since the image size we use is 210×158. In [16], the author
implemented a fusion technique named “deep jet” for finer
segmentation results. Instead of fusing results from multiple
layer such as using “deep jet”, we choose to slightly modify
the configuration of Alexnet to directly get a network with
stride 16 and receptive field 81 × 81. The rationale is this
paper focuses on validating the effectiveness of semantic
regularization on scene classification rather than obtaining
a finer semantic segmentation. Besides, the length of fc7 is
reduced to 512 while the original length in Alexnet is 4096,
which is also illustrated in Figure 2.

Our network is implemented on Caffe [19], a popular deep
learning framework. For model learning, we use stochastic
gradient descent with momentum to train the randomly
initialized network, and the size of each minibatch is 20.
The learning rate is fixed as 10−4 during the training process,
and the momentum is fixed as 0.9. Similar to the common
configuration in training deep neural networks, we use a
weight decay of 5−4, and double the learning rate of biases.
We also employ dropout in the fully connected layers. We
are planning to release our model in the near future.

B. Evaluation of semantic regularization

To evaluate the effectiveness of our semantic regulariza-
tion, we first make a comparison between our SS-CNN-
Rn and the basic Alexnet, where layer 1 to layer n in
SS-CNN-Rn are regularized by semantic segmentation cost
as introduced in Section III-A. Both SS-CNN-Rn and the
original Alexnet are trained with the same training data in
Ŝ19, and only RGB images are considered in this evaluation
experiment.

The models we compared include SS-CNN-R2, R4, R6
and R8. Comparison result is shown in Figure 6, which
demonstrates SS-CNN-Rn considerably outperforms the
original Alexnet for each n. It reveals the generalization
ability on scene classification is significantly improved with
the regularization of semantic segmentation.
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Fig. 6. Comparison of SS-CNN-Rn on scene classification with n =
2, 4, 6, 8. The performance on the original Alexnet is given as a baseline.

(a) Alexnet (b) SS-CNN-R6

Fig. 7. Confusion matrices of Alexnet and SS-CNN-R6, both are trained
with only training images in SUN RGB-D dataset.

By analyzing the influence of n in SS-CNN-Rn, we
can further gain insights in how the generalization ability
is enhanced with the regularization. Figure 6 shows the
performance of SS-CNN-Rn experiences slight promotion
with increased n from 2 to 6. It can be explained that when
n is small, the regularization is added only to the early layers
of main branch, which means the low-level features are
regularized. As n is increasing, the features being regularized
become more abstract, and even object-level features would
start to emerge in higher layers with the regularization on
semantic segmentation. However, it can be seen that the
performance of SS-CNN-R8 has an apparent drop. One
possible reason is that SS-CNN-R8 directly classifies the
scene based on semantic segmentation results, in which the
performance of scene classification would suffer from the
misclassification of semantic segmentation. For better illus-
tration, the confusion matrices of our best model SS-CNN-
R6 and Alexnet are given in Figure 7, which demonstrate
the scene classification result is considerably improved with
the semantic regularization.

C. Validation on scene classification

In this section, we make comparison between our SS-
CNN and the benchmark methods of scene classification
on S19 [5], with 4845 training samples and 4659 valida-
tion samples as shown in Table I. Two additional baseline
experiments are conducted, one takes object occurrence as
feature vector, and the other is based on the original Alexnet.
It is to be noted that our SS-CNN is trained and evaluated
on the resized Ŝ19, which does not compromise the fairness
in the task of scene classification. Following describes the
techniques those are used for the comparisons.

• GIST [20] + SVM. GIST is a famous descriptor for
modeling a scene image, which summarizes the gradient

information of a given image. An RBF kernel SVM is
employed for classification.

• Place-CNN [4] + SVM. As introduced in Section II,
Place-CNN is pre-trained on 2.5 million scene images
using Alexnet. Because of its pre-trained structure,
Place-CNN is usually employed as a feature extraction
method in scene classification applications and an ad-
ditional classifier is utilized for classification. In [5],
both Linear SVM and RBF Kernal SVM are considered
to train and classify the Place-CNN features extracted
from S19, and the later achieves the state-of-the-art
performance.

• Object occurrence + SVM. Assuming the ground truth
of object occurrences is known in every image, each
image can be represented by a binary encoded vector
with length Mo, with 1 denotes the object is contained
in the image and 0 otherwise, and Mo is the number
of object classes in the whole dataset. A linear SVM is
employed for classification.

• Alexnet. As both Place-CNN and SS-CNN are based on
Alexnet, the performance of the original Alexnet is also
evaluated as a baseline. The Alexnet we implemented is
trained with only training images in Ŝ19 from randomly
initialized weights. Unlike the separate feature extrac-
tion and classification required in Place-CNN model,
we trained Alexnet directly to classify scene using the
softmax classifier within the network architecture.

• SS-CNN. As suggested in Figure 6, SS-CNN-R6 is
the best configuration and thus is employed in this
comparison. Our SS-CNN-R6 is also trained with only
training images in Ŝ19 and the softmax classifier is
employed for classification.

Comparison results are given in Table II, where the accu-
racy is calculated as the mean accuracy of 19 scene classes.
Except for the classification based on object occurrence,
both RGB input and RGB-D input are considered for other
methods. For the depth information, [5] adopt the HHA [18]
representation in GIST feature and Place-CNN feature. HHA
is composed of horizontal disparity, height above ground,
and the angle information. As HHA requires inferring of the
ground and the gravity direction, our depth representation
in Section III-A is a more compact and effective choice as
shown in Table II.

Seen from the baseline experiment based on object occur-
rences, experimental results show that the binary occurring
feature significantly outperforms the hand-crafted feature
GIST, and reaches a similar level to the Place-CNN and
SS-CNN. It is to be noted that the dimension of the object
occurrence feature is much lower than the feature extracted
using the other methods. This experiment validates our hy-
pothesis that the knowledge on object level has the potential
to promote the performances of scene classification. On
the other hand, the superior results achieved by Place-CNN
and SS-CNN demonstrate the power of automatic feature
learning.

Furthermore, it can be seen that Place-CNN gains a
considerable promotion with pre-training on 2.5 million
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TABLE II
SCENE CLASSIFICATION COMPARISON ON SUN RGB-D DATASET.

Model Input Acc (%)
GIST + RGB 19.7
RBF Kernel SVM [5] RGB + D 23.0
Place-CNN + RGB 35.6
Linear SVM [5] RGB + D 37.2
Place-CNN + RGB 38.1
RBF Kernel SVM [5] RGB + D 39.0
Object occurrence + – 33.1Linear SVM

Alexnet RGB 24.3
RGB + D 30.7

SS-CNN-R6 RGB 36.1
RGB + D 41.3

scene images compared to the original Alexnet trained with
only SUN RGB-D dataset. For SS-CNN-R6 which is also
trained on SUN RGB-D dataset with only 5 thousand training
images, it achieves superior results taking advantage of the
regularization on semantic segmentation, which is slightly
better than the Place-CNN with our RGB-D input. It is
well known that deep neural networks usually require a
large number of training data, while our SS-CNN achieves
superior results with much less training samples, which
reinforcements our hypothesis that the scene classification
performance could be enhanced by involving object-level
information.

D. Validation on semantic segmentation and its refinement

We also evaluate the performance of the semantic segmen-
tation, the regularizer, and its refined results. The dataset we
use is S45 as shown in Table I, which has 37 object classes.
The comparing results are shown in Table III, the accuracy
is calculated as the mean accuracy of all 37 objects.

In Tabel III, we first compare the performances of SS-
CNN-R6 on Ŝ45, i.e. the resized dataset. Results show that
depth information significantly increases the mean accuracy
of semantic segmentation. Then it is further refined to
increase the mean accuracy. In particular, the accuracies on
“chair”, “ceiling” and “bookshelf” are significantly increased
with refinement.

To make a fair comparison to the benchmark methods
mentioned in [5], our predicted results on Ŝ45 is directly
resized to S45, which slightly effects the mean accuracy. The
comparing methods are listed as follow:

• Nearest neighbor. A nonparameteric method, [5] first
extracts features using the trained Place-CNN to repre-
sent each image, and the test image directly takes the
ground truth of the nearest neighbor in feature space as
its segmentation label.

• SIFT Flow [21]. Also a nonparameteric method which
takes the SIFT flow matching algorithm to search the
match images from dataset with available semantic
segmentation.

• Kernel Descriptors (KDES) [22]. A state-of-the-art
method which encodes the input with kernel descrip-

TABLE III
SEMANTIC SEGMENTATION COMPARISON ON SUN RGB-D DATASET.

Dataset Model Input Acc (%)

Ŝ45 SS-CNN-R6
RGB 27.77
RGB + D 37.03
RGB + D refined 41.76

S45

NN [5] RGB + D 8.97
SIFT Flow [5] RGB + D 10.05
KDES [5] RGB + D 36.33
SS-CNN-R6 RGB + D refined 40.66

TABLE IV
EXPERIMENTAL VALIDATION RESULTS ON DATASET COLLECTED IN OUR

UNIVERSITY.

Class #Sample Acc (%)
Computer room 41 19.5
Conference room 29 13.8
Corridor 38 47.4
Kitchen 14 35.7
Office 94 63.8
Rest space 14 57.1
All 230 39.6

tors and the contextual information is considered with
superpixel MRF and segmentation tree.

As can be seen in Table III, on dataset S45, we also achieve
the state-of-the-art performance on semantic segmentation
with the SS-CNN-R6. We illustrate some examples of our
predicted semantic segmentation labels with their refined
results in Figure 8.

E. Experimental validation

The experiments on the publicly available SUN RGB-D
dataset demonstrate the effectiveness of our SS-CNN. To fur-
ther validate the performance of SS-CNN in robotics related
application, we conducted an experiment using our mobile
robot. The robot moved around in one of our university
buildings and collected 230 RGB-D images with an on-board
Kinect V2, belonging to 6 scene classes.

For scene classification, we use the SS-CNN-R6 training
on SUN RGB-D dataset to predict the scene classes in the
collected images without retraining the network with images
in the new environment. To adapt to the SS-CNN-R6, each
collected image is also represented as catenation of RGB
image, depth image and normal vector image. The predicted
results are given in Table IV, where the mean accuracy of all
these 6 classes are given at the bottom row. Figure 1 gives
some example RGB images with their predicted labels. It is
to be noted that some images in this dataset are challenging
even for humans since the boundary between some scene
classes is not very clear. The last row in Figure 1 gives
two examples in this situation, the ground truth of these two
images is “computer room” and “rest space” respectively,
while they are denoted with “office” and “discussion area”.

As can be seen from Table IV, the predicted results are
in similar order to the validation results on SUN RGB-D in
the completely new environment, which further demonstrates
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Fig. 8. Illustration of semantic segmentation and its refinement. From left to right: RGB input, ground truth of semantic segmentation, predicted results
of SS-CNN-R6, refined predicted results of SS-CNN-R6. White color in the ground truth images denotes the background or confusing region and not
considered either in training nor test. It can be seen that refinement not only plays the role of smoothing, but also “strengthens” some specific objects in
the corresponding scene.

the generalization ability of our SS-CNN. Therefore, our SS-
CNN has the potential to be implemented in real robotics
applications without further training.

V. CONCLUSION

In this paper, we address the scene classification problem
using deep learning methods with a much smaller amount
of training images, by regularizing deep architecture with
semantic segmentation. Experimental results validate the
effectiveness of the regularization as SS-CNN achieved the
state-of-the-art results on both scene classification and se-
mantic segmentation on the publicly available SUN RGB-
D dataset. Further experiments on our robot demonstrates
the generalization ability of the proposed approach. For
the future work, we would like to investigate the potential
possibility in both horizontal and vertical dimensions, which
means to couple more relevant tasks, and to find better
architecture to incorporate the relations between these tasks.
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