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Abstract
As one of the key technologies of SLAM, loop-closure detection can help eliminate the cumulative errors of the odometry.
Many of the current LiDAR-based SLAM systems do not integrate a loop-closure detection module, so they will inevitably
suffer from cumulative errors. This paper proposes a semantic-based place recognition method called Semantic Scan Context
(SSC), which consists of the two-step global ICP and the semantic-based descriptor. Thanks to the use of high-level semantic
features, our descriptor can effectively encode scene information. The proposed two-step global ICP can help eliminate the
influence of rotation and translation on descriptor matching and provide a good initial value for geometric verification. Further,
we built a complete loop-closure detection module based on SSC and combined it with the famous LOAM to form a full
LiDAR SLAM system. Exhaustive experiments on the KITTI and KITTI-360 datasets show that our approach is competitive
to the state-of-the-art methods, robust to the environment, and has good generalization ability. Our code is available at:https://
github.com/lilin-hitcrt/SSC.
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1 Introduction

SimultaneousLocalization andMapping (SLAM)has rapidly
developed in recent decades as critical technologies for
autonomous vehicles and robots. Loop-closure detection
represents the ability of robots to recognize previously
visited places, which can build global constraints for the
SLAM system to eliminate the odometry’s cumulative errors
and establish a globally consistent map (Angeli et al.
2008). Loop-closure detection is usually conducted by using
images or point clouds. After a long period of research on
image-based loop-closure detection, many successful meth-
ods (Negre Carrasco et al. 2016; Muhammad et al. 2019;
Han et al. 2018) have been proposed. Since point cloud data
is rarely affected by environmental factors such as illumi-
nation and seasonal changes, LiDAR-based methods have
received widespread attention in recent years.

B Yong Liu
yongliu@iipc.zju.edu.cn

Lin Li
22032043@zju.edu.cn

1 Institute of Cyber-Systems and Control, Zhejiang University,
Hangzhou 310027, People’s Republic of China

Most existing works on LiDAR-based loop-closure detec-
tion are achieved by encoding the point cloud into global or
local descriptors and then matching the descriptors. They
usually use low-level features such as coordinates (Johnson
and Hebert 1999; Kim and Kim 2018; Kim et al. 2019; He et
al. 2016; Yin et al. 2018), normal (Chen et al. 2020), reflec-
tion intensity (Cop et al. 2018; Guo et al. 2019; Wang et al.
2020a; Chen et al. 2020, 2021), etc. In recent years, with
the development of the deep learning, many LiDAR-based
object detection (Shi et al. 2020) and semantic segmenta-
tion (Zhu et al. 2021; Tang et al. 2020) methods have been
proposed, making it possible to obtain semantic information
frompoint clouds.However, there are still only a fewLiDAR-
based works trying to use semantic information (Kong et al.
2020; Zhu et al. 2020; Chen et al. 2020, 2021).

In the field of visual SLAM, the loop-closure detection
based on local features (Bay et al. 2006; Rublee et al.
2011) and Bag-of-Words (BoW) (Galvez-López and Tar-
dos 2012)have been very mature and have been widely
used (Mur-Artal and Tardós 2017; Qin et al. 2018). Unlike
images containing rich texture features, point clouds are
almost pure geometric information, making loop-closure
detection based on point clouds challenging.As a result, there
are few effective methods integrated into LiDAR SLAM sys-
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tems yet. The odometry andmapping algorithms represented
by LOAM (Zhang and Singh 2017) have achieved very high
accuracy on the KITTI dataset (Geiger et al. 2013). How-
ever, due to the lack of a back-end optimization module,
these methods cannot establish global pose constraints, so
they will inevitably suffer from cumulative errors.

In this paper, we propose a semantic-based place recog-
nition method called Semantic Scan Context (SSC). Unlike
most existing works that encode low-level features such as
coordinates, normals, and reflection intensity as local or
global descriptors, we explore the use of high-level semantic
information to represent scenesmore effectively. Ourmethod
mainly consists of two parts, which are the two-step global
ICP and the semantic aided descriptor. The two-step global
ICP can estimate the 3-DOF pose (x, y, yaw) between the
point cloud pairs without initial prior. This pose is used
to eliminate the effects of rotation and translation in the
descriptor matching stage. To verify the performance of our
algorithm, we integrate the proposed approach into LOAM
to build a full LiDAR SLAM system.We combine the odom-
etry information and the similarity between the descriptors to
detect loop-closure candidates. Then we perform geometric
verification to reduce mismatches. The 3-DOF pose obtained
by the global ICP provides a good initial value for the geo-
metric verification. After detecting the loop-closures, we add
constraints to the pose graph and optimize it. We conduct
extensive experiments on the KITTI and KITTI-360 (Liao et
al. 2021) datasets to verify the effectiveness of the proposed
method. Figure 1 is a demonstration of our results. The main
contribution is summarized as follows:

– We propose a semantic-based place recognition method
called Semantic Scan Context, which explores high-level
semantic information to represent scenes more effec-
tively.

– We propose a global ICP to estimate the 3-DOF pose
(x, y, yaw) between the point cloud pairs. The pose is
used to eliminate the influence of rotation and translation
during descriptormatching and provide initial values dur-
ing geometric verification.

– We combine the odometry information and the similarity
between descriptors to detect loop-closure candidates.

– Our method can help the state-of-the-art LiDAR SLAM
system eliminate cumulative errors and build a globally
consistent map.

– Exhaustive experiments on the KITTI and KITTI-360
datasets show that our approach is competitive to the
state-of-the-art methods, robust to the environment, and
has good generalization ability.

Fig. 1 An example of loop-closure detection using semantic scan con-
text. It is a partial map of KITTI sequence 08, where frames 720 and
1500 form a reverse loop. The lower part of the figure is the semantic
scan context corresponding to the two frames. Since the directions of
them are opposite, the descriptors are quite different, while the aligned
one shown in Fig. 2 is easy to distinguish

2 Related works

According to the features used, we can divide the loop-
closure detection methods into three categories: geometry-
based, semi-semantic-based, semantic-based.

Geometry-based methods: Spin image (Johnson and
Hebert 1999) establishes a local coordinate system for each
point, then projects the point into the 2D space and counts the
number of points in different areas in the 2D space to form
a spin image. ESF (Wohlkinger and Vincze 2011) proposes
a shape descriptor that combines angle, point-distance, and
area to boost the recognition rate. Röhling et al. (Röhling
et al. (2015)) encode the distance between the point and the
robot as a histogram.M2DP (He et al. 2016) projects the point
cloud into multiple 2D planes and generates a density signa-
ture for each plane’s points. The left and right singular vectors
of those signatures are used as the global descriptors. Scan
context (Kim and Kim 2018; Kim et al. 2019) converts the
point cloud to polar coordinates and thendivides it into blocks
along the azimuth and radial directions. Lastly, it encodes
the z coordinate of the highest point in each block as a 2D
global descriptor. LocNet (Yin et al. (2018)) divides a point
cloud into rings, generates a distance histogram for each ring,
and stitches all histograms to form a global descriptor. Then
a siamese network is used to score the similarity between
the descriptors. LiDAR Iris (Wang et al. (2020b)) extracts
a binary signature image for each point cloud then uses the
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Hamming distance of two corresponding binary signature
images as the similarity. Seed (Fan et al. (2020)) segments
the point cloud into different objects and encodes the topo-
logical information of the segmented objects into the global
descriptor. The above methods have achieved good results
by encoding low-level geometric structures into descriptors.
Integrating more advanced features can further enhance the
discriminative power of descriptors.

Semi-semantic-based methods: Some methods use non-
geometric information to construct descriptors, such as
reflection intensity or learning-based features. These features
are related to the object type but do not clearly indicate the
semantic category, so we classify these methods as semi-
semantic based. ISHOT (Guo et al. 2019) and ISC (Wang et
al. 2020a) exploit the intensity information of the point cloud
for loop-closure detection. SegMatch (Dubé et al. 2017) and
SegMap (Dubé et al. 2019) cluster a point cloud into seg-
ments. Then they extract features for each segment and use
the kNN algorithm to identify correspondences. Based on
SegMatch, LOL (Rozenberszki and Majdik 2020) proposes
a method to correct the accumulated drift of the LiDAR-
only odometry. LLOAM (Ji et al. 2019) propose a complete
3D LiDAR-based SLAM system by combining LOAM with
a SegMatch-based loop-closure detection module. Point-
NetVLAD (Uy and Lee 2018) combines PointNet (Qi et al.
2017) and NetVLAD (Arandjelovic et al. 2016) to extract
global descriptors from the 3D point clouds. L3-Net (Lu et
al. 2019) selects key points from the given point cloud then
uses a PointNet to learn local descriptors for each key point.
OREOS (Schaupp et al. 2019) projects the 3D point cloud
into a 2D range image and proposes a convolutional neural
network to extract the global descriptor. DH3D (Du et al.
2020) designs a siamese network to learn 3D local features
from the raw 3D point clouds, then use an attention mecha-
nism to aggregate these local features as the global descriptor.
LPD-Net (Liu et al. 2019) proposes the adaptive local feature
extraction module and the graph-based neighborhood aggre-
gation module to extract local features of the point cloud;
then, as the PointNetVLAD, they use the NetVLAD to gen-
erate the global descriptor. MinkLoc3D (Komorowski 2021)
uses a sparse voxelized point cloud representation and sparse
3D convolutions to compute a discriminative 3D point cloud
descriptor. SeqSphereVLAD ( Yin et al. (2020)) projects the
point cloud onto a spherical view, extracts features on it and
sequences those features to form a descriptor. SpoxelNet (
Chang et al. (2020)) voxelized the point cloud in spheri-
cal coordinates and defines the occupancy of each voxel in
ternary values. Then they use a neural network to extract
the global descriptor. The above methods combine more
advanced features with geometric features. However, most of
them use neural networks to extract abstract features, which
are more complicated and not well interpretable.

Semantic-based methods: SGPR (Kong et al. 2020)
represents the scene as a semantic graph then score their sim-
ilarity through a graph similarity network. GOSMatch (Zhu
et al. 2020) proposes a new global descriptor that is gen-
erated from the spatial relationship between semantics. It
also proposes a coarse-to-fine strategy to efficiently search
loop-closures and gives an accurate 6-DOF initial pose. The
two methods represent the scene as a graph and abstract the
object as a node in the graph, which will cause the loss of
features such as the size of each object. OverlapNet (Chen
et al. 2020, 2021) designed a deep neural network that uses
different types of information, such as intensity, normal, and
semantics generated from LiDAR scans, to provide overlap
and relative yaw angle estimates between paired 3D scans.
However, it is too slow in preprocessing due to the need to
calculating the normal and inferring the complex network
backbone. To use the semantic information more effectively,
we propose our Semantic Scan Context approach.

3 Methodology

In this section, we present our semantic scan context
approach. Different from other scan context-based methods
that use incomplete semantic information and ignore small
translations between point clouds, we explore to exploit full
semantic information and emphasize that the small transla-
tion between point cloud pairs has a significant influence on
the accuracy of recognition.

As shown in Fig. 2, our method consists of two main
parts: two-step global semantic ICP and Semantic Scan Con-
text. The two-step global semantic ICP is divided into Fast
YawAngle Calculate and Fast Semantic ICP. First, we define
a point cloud frame as P = {p1, p2, · · · , pn}, with each
point pi = [xi , yi , zi , ηi ], ηi represent the semantic label
of pi . Given a pair of point clouds (P1, P2), we first use
our Fast Yaw Angle Calculate method to get the relative
yaw angle θ between them. Then we use the Fast Seman-
tic ICP to calculate their relative translation (�x,�y) in the
x-y plane. Through the above two steps, we get the rela-
tive poses (�x,�y, θ) of the two frames of point clouds in
the 2D subspace pose. In order to eliminate the influence of
rotation (e.g., reverse loop-closures) and small translation on
recognition, we use the obtained relative pose to align point
cloud P2. We mark the aligned point cloud as Pa . Finally,
we use our global descriptor – the Semantic Scan Context to
describe (P1, Pa) as (S1, S2). The similarity score is obtained
by comparing S1 and S2.

3.1 Global semantic ICP

It is known that the general ICP algorithm based on local
iterative optimization is susceptible to localminimums (Yang
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Fig. 2 The pipeline of our approach. It mainly consists of two parts:
two-step global semantic ICP and Semantic Scan Context. First, we
conduct semantic segmentation on the raw point cloud. Then we use
semantic information to retain representative objects and project them
onto the x-y plane. The two-step global semantic ICP is performed on

the projected cloud to get the 3-DOF pose (�x,�y, θ). Finally, we
use the 3-DOF pose to align the original clouds and generate global
descriptors (Semantic Scan Context). The similarity score is obtained
by matching SSC

et al. 2016). For loop-closure detection, we usually cannot
get a valid initial value, which leads to the failure of the
general ICP algorithm. To solve this, we propose the two-
step global semantic ICP algorithm consisting of Fast Yaw
Angle Calculate and Fast Semantic ICP. Benefited from the
use of semantic information, our algorithm does not require
any initial values to get satisfactory results.

Fast YawAngle Calculate. For scan context based meth-
ods, columns of their descriptor represent the yaw angle. The
pure rotation of the LiDAR in the horizontal plane will cause
the column shift of their descriptor. Scan context and Inten-
sity Scan Context get the similarity score and the yaw angle
at the same time. Specifically, they calculate similarity (or
distance) with all possible column-shifted descriptors and
find the maximum similarity (or minimum distance). How-
ever, there are twomain disadvantages. Firstly, it’s inefficient
to compare the whole 2D descriptors by shifting. Secondly,
they still try to get the maximum score for point clouds from
different places (not loop-closure). This obviously makes it
more prone to false positives. To draw the above issues, we
propose the semantic-based fast yaw angle calculate method.

Given a point cloud pair (P1, P2), we select some rep-
resentative objects (building, fence, trunk, pole, traffic-sign)
based on semantic information. Then we convert the filtered
clouds to polar coordinate in the x-y plane:

pi = [ri , ϕi , xi , yi , ηi ]

ri =
√
x2i + y2i

ϕi = arctan
(
yi
xi

)
(1)

where pi is the i-th point in each converted cloud, ri and
ϕi represent polar diameter and polar angle, respectively.
Each converted cloud is then segmented to Na sectors by
yaw angle. We only keep the point with the smallest polar
diameter in each sector. Finally, we get two clouds PI1 and
PI2, with Na elements. We sort the points in PI1 and PI2
according to the azimuth angle and save their corresponding
polar diameters as vectors R1 and R2. Similar to the scan
context, the shift of the column vector is related to the yaw
angle:

shift = argmin
i,i∈[0,Na ]

Ψ
(
R1, R

i
2

)

θ = 360

(
1 − shift

Na

)
(2)

where Ri
2 is R2 shifted by i-th element and Ψ is defined as:

Ψ (R1, R
i
2) =

∥∥∥R1 − Ri
2

∥∥∥
1

(3)

Compared with Scan Context and Intensity Scan Context,
our method only needs to compare one-dimensional vectors;
therefore, it is more efficient. Moreover, our method does not
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obtain the angle via maximizing the score, which is helpful
to identify non-loop-closure point-cloud pairs.

Fast Semantic ICP. Though most works ignore transla-
tion between point clouds, ignoring the translation causes
considerable declines in our experiments. In fact, for meth-
ods based on scan context, translation will affect both the
row and column of the descriptor. We cannot get the best
result just by the column-shifted descriptor. Therefore, we
propose a fast semantic ICP algorithm to correct the transla-
tion between point clouds.

To find the relative translation, we firstly rotate PI2 to the
same direction as PI1, and the rotated point cloud is PIa ,
which is defined as:

xai = xi cos (θ) − yi sin (θ)

yai = xi sin (θ) + yi cos (θ) (4)

where (xi , yi ) and (xai , yai ) represent the i-th point in PI2
and PIa respectively. Our ICP problem can be defined as:

(�x,�y) = argmin
�x,�y

L = argmin
�x,�y

Na∑
i=1

� (ηai , ηri )

· (xai + �x − xri )2 + (yai + �y − yri )2

2
(5)

where (xri , yri ) represents the correspondingpoint of (xai , yai ),
which is the point closest to (xai , yai ) in PI1, ηai and ηri are
semantic labels of the points. If ηai is equal to ηri , then the
output of � (ηai , ηri ) is 1; otherwise, 0. As our point clouds
are ordered, we can search for the corresponding points near
the position where the yaw angle is consistent with the target
point. Specifically, our search interval for the i-th target point
is:
[
i + shift − Nl

2
, i + shift + Nl

2

]
(6)

where Nl is the length of search interval and shift is defined
in Eq. (2). After a certain number of iterations, we can get
the relative translation between the input point clouds.

3.2 Semantic scan context

Scan Context and Intensity Scan Context uses the points’
height and reflection intensity as features, respectively. Their
methods essentially take advantage of the different character-
istics of different objects in the scene. However, height and
reflection intensity is only low-level features of the object
which are not representative enough. We explore to use the
high-level semantic features to represent scenes and thus pro-
pose the Semantic Scan Context descriptor.
Descriptor definition. Given a point cloud P , we first con-
vert it to the polar coordinate system as we did in Sect. 3.1.

Then, like scan context, we divide the point cloud into
Ns × Nr blocks along the azimuthal and radial directions.
Each block is represented by:

Bi j =
{
ηk

∣∣∣∣
(i − 1)Rmax

Nr
≤ rk <

i Rmax

Nr
,

2π( j − 1)

Ns
− π ≤ ϕk <

2π j

Ns
− π

}
(7)

where Rmax is the the maximum effective measurement dis-
tance of LiDAR, i ∈ [1, Nr ] and j ∈ [1, Ns]. Our descriptor
can be defined by:

S (i, j) = f
(
Bi j

) = argmax
η∈Bi j

E (η) (8)

f is an encoding function to encode features of Bi j . Note
that if Bi j = ∅, f

(
Bi j

) = 0. Function E is used to evalu-
ate the representative ability of each semantic object. Unlike
the global ICP in Sect. 3.1, we use eleven types of seman-
tic objects (road, parking, sidewalk, other-ground, building,
fence, vegetation, trunk, terrain, pole, traffic-sign) to con-
struct the descriptor.Wemanually set the priority of different
semantics in function E to show their representativeness. We
believe objects that appear less frequently in the scene are
more representative (e.g., traffic signs are more representa-
tive than roads).
Similarity Scoring.Given aligned clouds P1 and Pa , we can
get their descriptors S1 and S2 by Eq. (8). Then the similarity
score between them can be calculated by:

score1=

∑
1≤i≤Nr

∑
1≤ j≤Ns

I (S1(i, j) = S2(i, j))

∑
1≤i≤Nr

∑
1≤ j≤Ns

I (S1(i, j) �= 0 or S2(i, j) �= 0)

(9)

where I is the indicator function, defined by:

I (x) =
{
1 x is true
0 x is false

(10)

Figure 3 shows Semantic Scan Context creation.

3.3 SLAM system

Although the loop-closures can help eliminate the cumula-
tive error of the SLAM system, the wrong loop-closures will
cause serious damage to the reliability of the SLAM system.
Therefore, it is often necessary to add additional steps in the
actual SLAM system to avoid false loop-closures. We will
use the actual system as an example to describe how to apply
our method.
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Fig. 3 Anexample of generating SSC.ρ and θ represent the polar diam-
eter and polar angle, respectively. A sector corresponds to a descriptor
column, while a ring corresponds to a row of the descriptor

We integrate our proposed SSC into LOAM, a famous
LiDAR-based SLAM system, to test its performance. Fig-
ure 4 illustrates how our method works with LOAM.

Candidate selection based on odometry.When the new
scan comes, we first use LOAM to calculate the odometry.
Then we calculate the global descriptor Sc and range vec-
tor Rc from the current point cloud according to the process
described in the previous two sections. To avoid redundant
calculations, we store Sc and Rc in the database for subse-
quent use. Likemost othermethods,wefirst use the odometry
to roughly screen candidates to speed up processing. We set
a circular search area with the current position as the center.
The radius of the area is defined as follows:

R = ζD (11)

whereD is the cumulative distance between the current frame
and the target frame, ζ is a manually set constant-coefficient
representing the drift rate of the odometry. We take the point
cloud scans located in this area as candidates and exclude
recent ones.

Similarity verification and coarse pose estimation.We
load its corresponding global descriptor St and range vector
Rt from the database for each possible candidate point cloud.
Then we use the global semantic ICP method described
in Sect. 3.1 to calculate the 3-DOF pose (�x,�y, yaw)

between Rc and Rt . The obtained 3-DOFpose is used to align

the descriptors. Finally, we get the similarity score score1
between the current and target point clouds by comparing
the descriptors. Only when score1 is greater than the thresh-
old α1 will the subsequent steps be performed.

Geometric verification and pose refinement. We use
geometric verification to reduce the probability of false loop-
closures further. Specifically, we use LOAM’s point cloud
registration method to register the current point cloud and
the candidate point cloud. Due to the odometry drift, we use
the coarse pose obtained in the similarity verification step as
the initial pose of the registration. The initial pose is defined
as follows:

T0 =

⎛
⎜⎜⎝

cos(yaw) − sin(yaw) 0 �x
sin(yaw) cos(yaw) 0 �y

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (12)

Finally, we can get the registration score score2 and refined
pose. If score2 is greater than the threshold α2, we consider
that the current point cloud and the candidate point cloud
forma loop-closure. Thenweuse the refinedpose to construct
a loop-closure constraint in the pose graph and optimize it to
eliminate the cumulative error.

4 Experiments

4.1 Experiment setup

We conduct experiments on the KITTI and KITTI-360
datasets. The point clouds in both datasets are collected by
a 64-beam LiDAR (Velodyne HDL-64E). Table 1 shows the
details of the two datasets.

KITTI.TheKITTI dataset contains 11 training sequences
(00-10) with ground truth poses. We choose sequences with
loop-closure (00,02,05,06,07,08) for evaluation and note
that sequence 08 has reverse loops while others are in the
same direction. The ground-truth semantic labels are from
the SemanticKITTI dataset (Behley et al. 2019). We also
test our method with the semantic segmentation algorithm
(RangeNet++ (Milioto et al. 2019)) to prove that our method
can be applied to noisy predictions in real situations.

KITTI-360. The KITTI-360 dataset contains 9 training
sequences. Similar to the KITTI dataset, we select sequences
(0000, 0002, 0004, 0005, 0006, 0009) that contain loop-
closures for testing. Unlike the KITTI dataset, each sequence
of the KITTI-360 dataset contains a large number of reverse
loops, which brings great challenges to the loop-closure
detection algorithms. Another difference from the KITTI
dataset is that the KITTI-360 dataset does not label single-
frame point clouds with semantic information. Instead, it
stitches all the point clouds into a map and then annotates
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Fig. 4 This figure illustrates how our method works in an actual SLAM
system. First, we generate the global descriptor Sc and range vector Rc
for the input point cloud and save them in the database for reuse. Then
we roughly screen loop candidates according to the odometry. For each
candidate, we load its corresponding descriptor St and range vector Rt
from the database.We use the range vectors and the descriptors to calcu-
late the coarse pose (Tc) and similarity score (score1). If the similarity

verification is successful (score1 > α1), we will further perform geo-
metric verification. Specifically, we use point cloud registration to refine
Tc while obtaining geometric similarity score2. If the geometry verifi-
cation is successful (score2 > α2), we will establish a loop constraint
in the pose graph. Finally, we optimize the pose graph to eliminate the
cumulative error of the odometry

Table 1 Statistics of evaluation dataset

KITTI KITTI-360

00 02 05 06 07 08 00 02 04 05 06 09

Num of scans 4541 4661 2761 1101 1101 4071 10518 19240 11587 11587 9186 13247

Num of loops 7555 1684 4785 1578 1833 1994 19211 19514 11569 15150 19173 39137

Direction Same Same Same Same Same Reverse Both Both Both Both Both Both

The KITTI-360 dataset is more complex than the KITTI dataset. Compared with the KITTI dataset, each sequence of the KITTI-360 dataset
contains more loop-closures. What’s more, the KITTI-360 dataset includes lots of reverse loop-closures, which brings significant challenges to the
loop-closure detection algorithms

the map. To obtain the semantic information of a point in
the original point cloud, we use a KD-tree to find the closest
point in the map and classify the original point and the found
point into the same category.

Similar to SGPR (Kong et al. 2020), we regard the
point cloud pair with a relative distance less (greater) than
3m (20m) as a positive (negative) sample. In addition,
we excluded positive samples whose collection interval is
too short because they cannot characterize the ability of
loop-closures detection. Since there are too many negative
samples, we only select a part of the negative samples for
evaluation. Specifically, if Np positive samples are in a
sequence, we will randomly select α · Np negative sam-
ples. We can adjust the proportion of negative samples
by changing the coefficient α. In our experiments, we set
Na = 360, Nl = 20, Ns = 360, Nr = 50. All experi-
ments are done on the same system with an Intel i7-9750H
@3.00GHz CPU with 16 GB RAM.

4.2 Loop-closure detection performance

Asmentioned in Sect. 4.1, we use both ground-truth semantic
labels (Ours-SK) and predicted semantic labels (Ours-RN)
for testing.Wecompare our approachwith the state-of-the-art
methods, including Scan Context (Kim and Kim 2018) (SC),
Intensity Scan Context (Wang et al. 2020a) (ISC), M2DP
(He et al. 2016), LiDAR Iris (Wang et al. 2020b) (LI), Point-
NetVLAD (Uy and Lee 2018) (PV), OverlapNet (Chen et al.
2020, 2021) (ON), and SGPR (Kong et al. 2020). For SGPR,
we use their pre-trained models trained with the 1-fold strat-
egy. As we cannot reproduce the results of OverlapNet, we
use the pre-trained model provided by the author. The model
is trained on sequences 03-10, so sequences 05, 06, 07, 08
are included in the training set.

Fixed α. In this experiment, we set α to 100, which means
the number of negative samples is 100Np. Figure 5 shows the
precision-recall curve of each method. Additionally, we also
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Fig. 5 Precision-Recall curves on KITTI dataset

Table 2 F1 max scores and Extended Precision on KITTI dataset

Methods 00 02 05 06 07 08 Mean

SC 0.750/0.609 0.782/0.632 0.895/0.797 0.968/0.924 0.662/0.554 0.607/0.569 0.777/0.681

ISC 0.657/0.627 0.705/0.613 0.771/0.727 0.842/0.816 0.636/0.638 0.408/0.543 0.670/0.661

M2DP 0.708/0.616 0.717/0.603 0.602/0.611 0.787/0.681 0.560/0.586 0.073/0.500 0.575/0.600

LI 0.668/0.626 0.762/0.666 0.768/0.747 0.913/0.791 0.629/0.651 0.478/0.562 0.703/0.674

PV 0.779/0.641 0.727/0.691 0.541/0.536 0.852/0.767 0.631/0.591 0.037/0.500 0.595/0.621

ON 0.869/0.555 0.827/0.639 0.924/0.796 0.930/0.744 0.818/0.586 0.374/0.500 0.790/0.637

SGPR 0.820/0.500 0.751/0.500 0.751/0.531 0.655/0.500 0.868/0.721 0.750/0.520 0.766/0.545

Ours-RN 0.939/0.826 0.890/0.745 0.941/0.900 0.986/0.973 0.870/0.773 0.881/0.732 0.918/0.825

Ours-SK 0.951/0.849 0.891/0.748 0.951/0.903 0.985/0.969 0.875/0.805 0.940/0.932 0.932/0.868

F1 max scores and Extended Precision: F1 max scores / Extended Precision.
The best scores are marked in bold, and the second-best scores are underlined

use themaximum F1 score and Extended Precision (Ferrarini
et al. 2020) (EP) shown inTable 2 to analyze the performance.
The F1 score is defined as:

F1 = 2PR

P + R
(13)

where P and R represent the Precision and Recall, respec-
tively; F1 is the harmonic mean of P and R. It treats P and R
as equally important and measures the overall performance
of classification. The Extended Precision is defined as:

EP = 1

2
(PR0 + RP100) (14)

where PR0 is the precision at minimum recall, and RP100 is
themax recall at 100%precision. EP is specifically designed
metrics for loop-closure detection algorithms.

As shown in Fig. 5 and Table 2, Ours-SK surpasses other
methods in all indicators of all sequenceswith a largemargin.
Especially in sequence 08, which has only reverse loops, the
performance of other methods drops significantly while our
method still performs well. This indicates that our method is
robust to view angle changes. OverlapNet performs well on
most sequences except 08. We guess this is because it uses
the normal of the point cloud, which will change as the point
cloud rotates. Therefore, this method cannot robustly handle

123



Autonomous Robots (2022) 46:535–551 543

Fig. 6 Average F1 max score and Average Extended Precision corresponding to different α

reverse loops. SGPR works well on indicator the F1 max
score but poorly on the Extended Precision. We find that it
gives some negative samples a huge score, which causes the
recall to be almost zero when the accuracy reaches 100%.
The result of Ours-RN is slightly worse than Ours-SK as
expected. As the difference is not obvious, it means that our
approach can adapt to semantic segmentation algorithms for
actual systems.

Change α. In this experiment, we change the value of α

to analyze the influence of the number of negative samples
on those algorithms. Figure 6 shows the Average F1 max
score and Average Extended Precision corresponding to dif-
ferent α. It clearly shows that our method performs better
than others no matter how much α is taken. As α increases,
the performance of all methods gradually decreases, but our
method is less affected, showing that our method can effec-
tively identify negative samples. For loop-closure detection,
negative samples are generally far more than positive sam-
ples,which is one key reasonwhyourmethod leads inmetrics
far ahead. Moreover, identifying negative samples is signif-
icant as false positives will bring fatal crashes to the SLAM
system.

4.3 Pose accuracy

As described in Sect. 3.1, our approach can estimate the 3D
relative pose (�x,�y, θ), while most other methods cannot
estimate pose or can only estimate 1D pose (yaw). We com-
pare our method with Scan Context, Intensity Scan Context,
and Overlap. The ground-truth pose is calculated by:

T = T−1
1 T2

(�x,�y, θ) =
(
T (1, 3) , T (2, 3) , arctan

(
T (2, 1)

T (1, 1)

))

Table 3 Yaw error on KITTI dataset

sequences SC (deg) ISC (deg) ON (deg) Ours-SK (deg)

00 11.526 0.829 2.595 0.891

02 11.301 1.343 4.911 1.142

05 18.394 0.904 3.329 0.653

06 4.074 0.534 1.124 0.759

07 21.862 0.684 2.233 0.512

08 49.170 3.856 68.622 1.878

Average 19.388 1.358 13.802 0.973

(15)

where T1 ∈ SE(3) and T2 ∈ SE(3) represent the pose of
P1 and P2, respectively. Since the pitch and roll angles are
hardly changed in autonomous vehicles, we ignore them.

Table 3 shows the relative yaw error on the KITTI dataset.
We can see that our method outperforms other methods in
terms of the average relative yaw error. Especially in the
challenging sequence 08, affected by the reverse loop, most
methods perform poorly, while our method can still accu-
rately estimate the yaw angle. This again shows that our
method can handle the reverse loop well. As mentioned in
Sect. 4.2, OverlapNet performs poorly due to its inability to
handle reverse loops.

Figure 7 shows the relative translation error of our
approach on the KITTI dataset. As shown, our method can
estimate accurate relative translation, which is currently not
possiblewith othermethods to our knowledge. Thus, our Fast
Yaw Angle Calculate and Fast Semantic ICP approaches can
give accurate 3-DOF pose estimation. This can provide a
good initial value for the ICP algorithm to obtain a 6D pose
or directly serve as a global constraint in the SLAM system.
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Fig. 7 Translation error

4.4 Robustness test

Occlusion Test: In the actual scene, part of the point cloud
may be occluded due to the change of perspective or the
influence of dynamic objects. To test the robustness of our
approach to this situation, we simulated the occluded point
cloud on the KITTI dataset. We randomly remove points
within 30 degrees along the azimuth direction for each point
cloud frame to simulate occlusion. We also design exper-
iments to test whether occlusion will deteriorate semantic
segmentation results and indirectly affect our algorithm.
Specifically, we conduct experiments to simulate occlu-
sion before semantic segmentation (Ours-RN*) and after
semantic segmentation (Ours-RN). As shown in Table 4, the
performance of all methods has declined as expected. How-
ever, compared to other methods, our method is less affected,
and the performance of our method is far superior to other
methods in most sequences. Almost all learning-based meth-
ods (PV,ON, SGPR) have been greatly affected,which shows
that the generalization ability of these methods is limited.
M2DP is not a learning-based method, but it suffers the most
from all methods. This is because it uses PCA to establish
a coordinate system for the point cloud, and occlusion will
greatly affect the results of PCA. Comparing the results of
Ours-RN andOurs-RN*,we can see that occlusion does indi-
rectly affects our algorithm.However, the result ofOurs-RN*
is only slightly worse than that of Ours-RN. We guess that
the semantic segmentation algorithm mainly relies on local
features, so occlusion will not have a huge impact.

Viewpoint Changes: Usually, the robot can return to the
original position in different directions. Therefore, being able
to adapt to changes of viewpoint is very important for loop-
closure detection algorithms. We randomly rotate the point
cloud on the KITTI dataset to simulate the change of view-
point. As shown in Table 5, our method is almost unaffected

thanks to the global ICP,which shows that ourmethod is rota-
tion invariant. LiDAR Iris uses Fourier transform to achieve
rotation invariance, so this method is not affected by view-
point changes. To reduce the influence of rotation, SGPR
performs data enhancement in the network training stage, SC
and ISC perform column shifts on the descriptors. However,
their results were still slightly affected. The performance of
the several remaining methods is greatly reduced due to their
sensitivity to changes of viewpoint. The results of Ours-RN
and Ours-RN* are almost identical, which shows that the
rotation has nearly no effect on the semantic segmentation
algorithm we use.

4.5 Generalization ability

To further explore the generalization ability of our method,
we conducted experiments on the KITTI-360 dataset. As
described in Sect. 4.1, the KITTI-360 dataset is more com-
plex than the KITTI dataset. Compared with the KITTI
dataset, the KITTI-360 dataset contains both forward and
reverse loop-closures in each sequence. This requires the
algorithm to be able to handle rotation. As shown in Fig. 8,
because the semantic information of the single-frame point
cloud on KITTI-360 is acquired manually, there are errors
in the annotation. Obviously, this will have an impact on
semantic-based methods.

Since the number of loop-closures on the KITTI-360
dataset is much more than that on the KITTI dataset, we
set α to 10 instead of 100 to reduce the experiment time. As
shown in Fig. 9 and Table 6, our method can also achieve
good results on the KITTI-360 dataset. This proves that our
method has good generalization ability. As mentioned in
Sect. 4.4, because M2DP, OverlapNet, and PointNetVLAD
are not rotation-invariant, they perform poorly on the KITTI-
360 dataset.

4.6 Performance in the SLAM system

This experiment is designed to show how our method can
benefit the SLAM system.We integrate the proposedmethod
into the existing SLAM system LOAM and evaluate it on the
KITTI dataset.

Quantitative Results. Table 7 shows the relative pose
error (RPE) and absolute translation error (ATE) on the
KITTI dataset. It can be seen from the table that our method
can significantly reduce the relative pose error and absolute
trajectory error of the odometry. Figure 10 shows the trajec-
tory on the 00 sequences of the KITTI dataset. From this
figure, we can intuitively see that the consistency of the tra-
jectory has been greatly improved after applying ourmethod.

Qualitative Results. Visualizations of the similarity are
shown in Fig. 11. The first row (a-c) and the second row (d-
f) are the visualization results of sequence 00 and sequence
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Table 4 Table caption

Methods 00 02 05 06 07 08 Mean Cmp

SC 0.724/0.619 0.751/0.591 0.845/0.692 0.904/0.836 0.616/0.554 0.552/0.561 0.732/0.642 −0.045/−0.039

ISC 0.620/0.579 0.686/0.590 0.711/0.633 0.812/0.725 0.589/0.606 0.387/0.538 0.634/0.612 −0.036/−0.049

M2DP 0.199/0.510 0.138/0.510 0.283/0.512 0.140/0.518 0.113/0.506 0.046/0.500 0.153/0.509 −0.422/−0.091

LI 0.627/0.585 0.710/0.628 0.679/0.688 0.859/0.759 0.585/0.590 0.383/0.532 0.641/0.630 −0.062/−0.044

PV 0.547/0.534 0.570/0.529 0.295/0.502 0.589/0.581 0.444/0.513 0.031/0.500 0.413/0.527 −0.182/−0.094

ON 0.756/0.549 0.706/0.593 0.791/0.584 0.781/0.538 0.712/0.502 0.246/0.500 0.665/0.544 −0.125/−0.093

SGPR 0.649/0.500 0.604/0.500 0.619/0.557 0.542/0.501 0.625/0.571 0.531/0.500 0.595/0.522 −0.171/−0.023

Ours-RN 0.900/0.684 0.870/0.596 0.918/0.846 0.950/0.874 0.838/0.711 0.863/0.772 0.890/0.747 −0.028/−0.078

Ours-RN* 0.900/0.693 0.863/0.595 0.920/0.856 0.944/0.853 0.834/0.711 0.852/0.726 0.886/0.739 −0.032/−0.086

Ours-SK 0.919/0.766 0.881/0.609 0.929/0.862 0.948/0.853 0.847/0.765 0.911/0.853 0.906/0.785 −0.026/−0.083

F1 max scores and Extended Precision: F1 max scores / Extended Precision. We randomly remove points within 30 degrees along the azimuth
direction for each point cloud frame to simulate occlusion. The best scores are marked in bold.
Ours-RN: remove points after semantic segmentation; Ours-RN*: remove points before semantic segmentation

Table 5 Viewpoint Changes

Methods 00 02 05 06 07 08 Mean Cmp

SC 0.719/0.599 0.734/0.627 0.844/0.754 0.898/0.864 0.606/0.542 0.546/0.572 0.725/0.660 −0.052/−0.021

ISC 0.659/0.627 0.701/0.582 0.769/0.722 0.840/0.770 0.629/0.651 0.403/0.540 0.667/0.649 −0.003/−0.012

M2DP 0.276/0.543 0.282/0.545 0.341/0.533 0.316/0.549 0.204/0.534 0.201/0.502 0.270/0.534 −0.305/−0.066

LI 0.667/0.624 0.764/0.661 0.772/0.749 0.912/0.792 0.633/0.663 0.470/0.567 0.703/0.676 0.000/+0.002

PV 0.083/0.504 0.090/0.506 0.490/0.518 0.094/0.506 0.064/0.503 0.086/0.504 0.151/0.507 −0.444/−0.114

ON 0.130/0.501 0.092/0.505 0.113/0.501 0.114/0.502 0.173/0.507 0.117/0.501 0.123/0.503 −0.667/−0.134

SGPR 0.772/0.501 0.716/0.501 0.723/0.534 0.640/0.502 0.748/0.624 0.678/0.506 0.713/0.528 −0.053/−0.017

Ours-RN 0.939/0813 0.888/0.756 0.939/0.878 0.989/0.980 0.868/0.757 0.905/0.814 0.921/0.833 +0.003/+0.008

Ours-RN* 0.937/0.782 0.880/0.725 0.936/0.886 0.979/0.956 0.874/0.782 0.938/0.871 0.924/0.834 +0.006/+0.009

Ours-SK 0.955/0.850 0.889/0.730 0.952/0.899 0.986/0.969 0.876/0.795 0.943/0.933 0.934/0.863 +0.002/−0.005

F1 max scores and Extended Precision: F1 max scores / Extended Precision. We randomly rotate the point cloud on the KITTI dataset to simulate
the change of viewpoint. The best scores are marked in bold.
Ours-RN: rotate the point cloud after semantic segmentation; Ours-RN*: rotate the point cloud before semantic segmentation

Fig. 8 The semantic information on the KITTI-360 dataset is worse

08. The first column (a and d) shows the similarity between
a single frame point cloud and all other point clouds in the
sequence. We randomly select a single frame point cloud to
compare it with all the remaining point clouds and use the

color shade to indicate the similarity. It can be seen from the
figure that only scenes near the selected scene have high
similarity, which shows that our method rarely has false
detections. The second column (b and e) is the similarity
matrix, and both rows and columns represent

nodes in the sequence. Specifically, the value in the i-th
row and j-th column of the similarity matrix is the similarity
between the point cloud of the i-th frame and the j-th frame
obtained by our method. Similar to the second column, the
third column (c and f) is the distance matrix. The value of the
i-th row and j-th column of the distance matrix is calculated
by the following formula:

vi j =
{

(20 − d) /20 d < 20 and |i − j | > 100

0 d ≥ 20 or |i − j | ≤ 100
(16)
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Fig. 9 Precision-Recall curves on KITTI-360 dataset

Table 6 F1 max scores and Extended Precision on KITTI-360 dataset

Methods 0000 0002 0004 0005 0006 0009 Mean

SC 0.831/0.528 0.771/0.554 0.811/0.629 0.843/0.715 0.834/0.658 0.851/0.619 0.824/0.617

ISC 0.653/0.519 0.675/0.524 0.675/0.541 0.736/0.562 0.705/0.630 0.773/0.578 0.703/0.559

M2DP 0.423/0.557 0.209/0.509 0.246/0.512 0.311/0.534 0.397/0.544 0.620/0.570 0.368/0.538

LI 0.688/0.535 0.704/0.552 0.714/0.627 0.747/0.603 0.720/0.617 0.782/0.580 0.726/0.586

PV 0.352/0.511 0.349/0.515 0.325/0.515 0.285/0.508 0.295/0.510 0.330/0.510 0.323/0.512

ON 0.553/0.550 0.308/0.527 0.448/0.507 0.339/0.549 0.512/0.534 0.739/0.605 0.483/0.545

SGPR 0.818/0.505 0.788/0.505 0.795/0.504 0.798/0.500 0.833/0.514 0.843/0.501 0.813/0.505

Ours 0.921/0.733 0.974/0.780 0.975/0.744 0.974/0.803 0.978/0.933 0.970/0.866 0.965/0.810

F1 max scores and Extended Precision: F1 max scores / Extended Precision.
The best scores are marked in bold

Table 7 The relative pose error (RPE) and absolute translation error (ATE) on the KITTI dataset

RPE ATE

00 02 05 06 07 08 00 02 05 06 07 08

LOAM 0.657 0.832 0.419 0.368 0.411 0.909 4.029 10.257 3.412 0.671 0.596 3.117

LOAM+SSC 0.634 0.778 0.279 0.359 0.316 0.876 0.873 5.256 0.344 0.470 0.302 1.814

RPE: mean relative pose error over trajectories of 100 to 800 m. ATE: directly measures the difference between points of the true and the estimated
trajectory
The best results are marked with bold
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Fig. 10 Trajectory of sequence 00 on the KITTI dataset

Where d represents the distance between the point cloud of
the i-th frame and the j-th frame. Comparing Figure b and
Figure c (or Figure e and Figure f), we can find that the
similarity distribution of the similarity matrix is very similar
to the distance distribution of the distancematrix. This shows
that the similarity distribution given by our method is ideal,
which is an important reason why our method can achieve
good results.

4.7 Ablation study

Contribution of individual components. We design an
ablation study to investigate the contribution of each com-
ponent. Specifically, we remove or replace a module at a
time and then calculate the F1 max scores and Extended
Precision. To show the contribution of our Fast Yaw Angle
Calculate method, we replace this module with the method
used in scan context – shift the column of descriptors and
calculate the maximum similarity score while obtaining the
yaw angle. Similarly, we replace the semantic label in the
descriptor by maximum z to see semantic contribution. To

Fig. 11 Similarity visualization. The first row a–c and the second row
d–f are the visualization results of sequence 00 and sequence 08. For
the first column (a and d), we randomly choose a single scene in each
sequence and zoom in similarity scores around this scene. The second

(b and e) and third (c and f) columns show the corresponding similar-
ity matrix and distance matrix, respectively. The darker the color, the
higher the similarity
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Table 8 Contribution of individual components

Yaw ICP Semantic F1/EP Decrease

√ √
0.896/0.820 3.6%/4.8%√ √
0.757/0.685 17.5%/18.3%√ √
0.775/0.762 15.7%/10.6%√ √ √
0.932/0.868 0.0%/0.0%

evaluate the contribution of our Fast Semantic ICP approach,
we directly set �x and �y to 0. As shown in Table 8, after
removing Yaw, ICP, and Semantic, the average F1 max score
decrease by 3.6%, 17.5%, 15.7%, and the average Extended
Precision decrease by 4.8%, 18.3%, 10.6%. Therefore, the
following conclusions can be drawn:

– Compared with other methods, our approach can get a
more accurate yaw angle and translation.

– As we emphasized, the small translation has a significant
impact on scan context-based methods. Simply ignoring
the translation will greatly weaken the performance.

– High-level features, like semantics, can bring consider-
able improvements in the scene description.

Contribution of individual semantic. Our descriptor
uses a total of eleven types of static semantic objects (road,
parking, sidewalk, other-ground, building, fence, vegetation,
trunk, terrain, pole, traffic-sign). We delete each semantic
separately to show their contribution. To speed up the exper-
iment, we set α to 10, which means that the number of
negative samples is ten times that of positive samples. As
show in Table 9, removing any semantics alone will not have
a particularly large impact on the results. This shows that
our method does not depend on specific semantics and can
still work when some semantic information is missing in the
environment. Among all semantics, vegetation has the great-
est influence, especially in sequences 02 and 08. We found
that there is far more vegetation than other objects in these
scenes, so a lot of information will be lost if we remove all
the vegetation. It can be expected that the more semantic
categories we use, the more robust our method will be.

4.8 Efficiency

To evaluate the efficiency, we set α to 1 and compare the
average time cost of ourmethodwith ScanContext and Inten-
sity Scan Context on sequence 08. As shown in Table 10,
the total time cost of our approach is acceptable. As we
use the obtained 3-DOF pose to align the point clouds in
advance, we don’t need to shift the column of descriptors
during thematching stage, so our retrieval speed is extremely
fast. Our two-step global semantic ICP only takes 2.126 Ta
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Table 10 Average time cost on KITTI 08

Methods Size Description Retrieval ICP Total

SC 20 × 60 4.825 0.158 – 4.983

ISC 20 × 90 3.094 0.800 – 3.894

Ours 50 × 360 2.563 0.066 2.126 4.755

The unit of time in the table is milliseconds.
The best results are marked with bold

milliseconds on average. This algorithm is fast due to the
following reasons. Firstly, since we only keep Na (360 taken
in our experiments) points, the computational cost is greatly
reduced compared to the original point cloud (about 120,000
points). Secondly, We divide the algorithm into two steps,
first calculate the yaw angle, and then iteratively calculate
�x and �y, which simplifies the algorithm and speeds up
the calculation. Thirdly,when calculating�x and�y, we use
the yaw angle to align the input clouds in advance. Therefore
we don’t need to traverse the entire point cloud when look-
ing for the corresponding points. Instead, we can find them
near the corresponding positions, which greatly reduces the
number of searches.

5 Conclusion

This paper addressed loop-closure detection for LiDAR
SLAM. We propose a semantic-based place recognition
method called Semantic Scan Context to estimate the simi-
larity between pairs of LiDAR scans. At the same time, our
method can also give a rough 3-DOF pose, eliminating the
influence of rotation and translation on descriptor matching.
Based on Semantic Scan Context, we add geometric verifica-
tion and other operations to reduce mismatches further, thus
obtaining a complete loop-closure detectionmodule. Finally,
we combine the proposed loop-closure detection module
with the well-known LOAM to build a full LiDAR SLAM
system. Extensive experiments on the KITTI and KITTI-360
datasets prove that our method is competitive to the state-
of-the-art methods, robust to the environment, and has good
generalization ability.

However, in practical applications, we have also found
some shortcomings, one of which is the cost of redundant
calculation. Since we need to align the source point cloud
to the target point cloud, the descriptor corresponding to the
source point cloud always needs to be calculated online. In
our future work, we will try to solve this problem.
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