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Abstract—LiDAR-based place recognition (LPR) is one of the
basic capabilities of robots, which can retrieve scenes from maps
and identify previously visited locations based on 3D point clouds.
As robots often pass the same place from different views, LPR
methods are supposed to be robust to rotation, which is lacking in
most current learning-based approaches. In this letter, we propose a
rotation invariant neural network structure that can detect reverse
loop closures even training data is all in the same direction. Specif-
ically, we design a novel rotation equivariant global descriptor,
which combines semantic and geometric features to improve de-
scription ability. Then a rotation invariant siamese neural network
is implemented to predict the similarity of descriptor pairs. Our
network is lightweight and can operate more than 8000 FPS on an
i7-9700 CPU. Exhaustive evaluations and robustness tests on the
KITTI, KITTI-360, and NCLT datasets show that our approach
can work stably in various scenarios and achieve state-of-the-art
performance.

Index Terms—Recognition, localization, semantic scene
understanding.

I. INTRODUCTION

P LACE recognition is a fundamental issue in computer
vision and robotics, which is also known as loop closure

in SLAM (Simultaneous Localization and Mapping). Robots
typically need to identify the current location by comparing
the query sensor data with a historical map database. It helps
correct cumulative errors of odometry and estimate positions in
GPS denied situations, e.g., under overhanging trees or near high
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buildings. Camera and LiDAR are the two most commonly used
sensors in SLAM. Visual place recognition (VPR) has been stud-
ied extensively and continuously [1], [2], as image data is easy
to acquire and contains rich textures. However, image-based
methods are quite sensitive to illumination and seasonal changes,
limiting their application in large-scale scenes. Whilst, LiDAR
captures accurate geometric structures and is rarely affected by
appearance changes, which has recently attracted widespread
attention.

Most LPR methods [3]–[5] are geometric-based by encoding
geometric features of point clouds into the scene representation.
Recently, some studies [6]–[8] show that semantics help boost
performance, especially robustness. However, semantic-based
LPR methods are few, and how to effectively use semantics is
still an open issue.

LiDARs typically have a 360-degree field of view, and robots
often return with different viewpoints. Thus, the LPR algorithms
are required to identify the same place with a large orientation
difference [9], or are supposed to be rotation invariant. Some
methods use brute force search [4], [8], [10] or transform to
the frequency domain [5] to achieve rotation invariance. How-
ever, many learning-based methods do not consider viewpoint
changes or expect rotation robustness via simple data augmen-
tation by randomly rotating training samples. When the input
data rotates, the output of these neural networks also changes,
producing unlike descriptors for the same scene. Therefore,
neural networks for LPR need to be specially designed to achieve
rotation invariance.

In this paper, we propose a structurally rotation invariant
neural network, which can focus more on learning the scene’s
characteristics instead of being entangled in the orientation of
point clouds. To achieve this goal, we first design a novel rotation
equivariant global descriptor, leveraging semantic and geometric
features for better discriminative ability. Then we improve the
typical convolutional and pooling layer to strictly ensure our
neural network rotation invariant, which is further formed as a
siamese network for similarity prediction. Our main contribution
is summarized as follows:
� We propose a novel rotation equivariant global descriptor

for LPR, which combines semantic and geometric infor-
mation for better description ability.

� We propose a novel rotation invariant neural network,
which achieves strict rotation invariance structurally.

� The inference speed of our network can reach more than
8000 FPS on an i7-9700 CPU and 20,000 FPS on an
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NVIDIA GeForce GTX 1080 Ti GPU, making it applicable
for mobile platforms with limited resources.

� Exhaustive experiments on the KITTI [11], KITTI-
360 [12], and NCLT [13] datasets demonstrate the state-of-
the-art performance and robustness of our approach. Our
code will be publicly available.

II. RELATED WORK

A. 3D LiDAR-Based Place Recognition

As LiDAR can obtain rich and accurate environmental 3D
geometric information, most LPR methods focus on extracting
statistical features of geometric distributions. Rusu et al. [14]
propose a global descriptor called VFH for 3D point clouds,
which encodes geometry and viewpoint simultaneously. Steder
et al. [15] represent point clouds as range images and then use
the feature point-based method for place recognition. Boss and
Zlot [16] propose a keypoint voting approach to speed up feature
matching. Röhling et al. [17] encode the height of the point as
a histogram to get the global statistics of the scenes. M2DP [3]
projects the point cloud to multiple 2D planes and then uses
the statistical information on each plane to generate descriptors.
Scan context [4] divides the point cloud into different blocks
according to the radius and azimuth direction, and uses reserves
maximum heights for each block. LiDAR-Iris [5] proposes a
LiDAR-Iris image representation and transforms it into the fre-
quency domain to achieve pose-invariant loop closure detection.
Seed [18] encodes the topological relation of the segmented
objects as the global descriptor, achieving rotation invariant
and insensitive to translation variation. Recently, some methods
obtained good results by leveraging intensity information [10],
[19], [20].

Benefit by powerful neural networks, learning-based meth-
ods show great potential in LPR. OREOS [21] projects point
clouds onto 2D range images and extract global descriptors
by CNN. SegMatch [22] and SegMap [23] extract 3D features
of the segmented objects and then perform place recognition
via feature matching. Locus [24] aggregates the features ex-
tracted by SegMatch into a global descriptor. This method
can encode the topological and temporal information of the
scenes. PointNetVLAD [25] uses PointNet [26] to extract local
features and uses NetVLAD [1] to aggregate global features.
DiSCO [9] uses an encoder-decoder to extract features from the
scan context image representation, which is further converted
to the frequency domain to eliminate the effect of rotation.
NDT-Transformer [27] converts the point cloud into an NDT
representation and adopts the Transformer [28] to extract the
global descriptor. FusionVLAD [29] fuse features extracted
from the spherical-view and top-down view to generate more
robust descriptors.

Some recent studies explore the usage of semantics for scene
representation. SGPR [6] and GOSMatch [30] represent point
clouds as semantic graphs. OverlapNet [7] combines various
information such as semantics, normals to achieve a full de-
scription of the scene. SSC [8] uses semantics to improve the
performance of scan context. In this paper, we leverage seman-
tics and geometric features to build a discriminative rotation
equivariant global descriptor.

B. Rotation Invariant Neural Network

Though deep learning has made breakthroughs in point cloud
processing recently, typical neural networks [26], [31], [32] are
not robust to rotation. Thus, making network rotation invariant
has aroused researchers’ concern. Kim et al. [33] propose a local-
to-global representation algorithm, which improves robustness
to rotation. SE(3)-Transformers [34] propose a variant of the
self-attention module for 3D point clouds and graphs, which
is equivariant under continuous 3D roto-translations. PRIN [35]
proposes the Spherical Voxel Convolution and Point Resampling
to extract rotation invariant features for each point. Esteves et
al. [36] model 3D data with multi-valued spherical functions
and propose a spherical convolutional network to learn SO(3)
Equivariant Representations. However, the above methods are
designed generally for 3D point clouds, which is not specialised
for LiDAR data and either the LPR task. In fact, the rotation
of autonomous robots only occurs in the yaw direction, which
can simplify the problem. Thus, we propose a rotation invariant
neural network suitable for LiDAR data and LPR.

III. METHODOLOGY

The proposed approach mainly consists of three parts: de-
scriptor generation, feature extraction and similarity prediction,
as shown in Fig. 1. Given a pair of point clouds, we first
convert them into rotation equivariant global descriptors. Then
for the obtained global descriptors, we use a rotation invariant
siamese neural network to extract features further. After feature
extraction, each point cloud is encoded as a fixed-length vector.
Finally, we compare the feature vectors to get the similarity score
between the input point clouds.

A. Preliminaries

Rotation equivariant: Let a point cloud be P ∈ RN×3, where
N is the number of points. We define our descriptor as D ∈
RNs×Nl , whereNs andNl are the length and the number of chan-
nels, respectively. Our descriptors can be processed efficiently
by 1-D convolution. We denote the operation of encoding the
point cloud as G : RN×3 → RNs×Nl . If the rotation R on P is
equivariant to the shift S on D, we call G is rotation equivariant:

S[ρθ](D) = S[ρθ](G(P )) = G(Rθ(P )) (1)

where θ ∈ [0, 2π) is the rotation angle, ρ is a scale factor, and [∗]
is the rounding function. Let V be the input of a specific layer
in the network. If any operation F is shift equivariant [37], the
following formula holds:

S[εd](F(V )) = F(Sd(V )) (2)

where d and ε are the amount of shift and a scale factor,
respectively. Since the rotation on the point cloud is equivalent
to the shift on the descriptor in our method, we also call the
above property rotation equivariant. For convenience, we will
refer to the shift as ‘rotation’ hereafter.

Rotation invariant: We say that the operation F is rotation
invariant [38] if the following formula holds:

F(V ) = F(Sd(V )) (3)
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Fig. 1. The pipeline of the proposed approach mainly consists of three parts: descriptor generation, feature extraction, and similarity prediction. In descriptor
generation, we combine semantic and geometric info to encode the scene as a rotation equivariant descriptor. In feature extraction, we use a rotation invariant
siamese network to further extract features from the descriptor and finally obtain a feature vector of length Nf . We use an MLP to score the similarity between
feature vectors.

Further, we defineF as sum-rotation-invariant if the following
formula holds: ∑

F(V ) =
∑

F(Sd(V )) (4)

where the summation is over the entries of F(V ) and F(Sd(V )).
It’s easy to prove that a rotation equivariant operation (2) must be
sum-rotation-invariant [38]. Therefore, as long as each operation
in our network is rotation equivariant, we can achieve rotation
invariant by adding a global pooling operation at the end.

B. Rotation Equivariant Global Descriptor

Given a point cloud, we first convert it to the polar coordinate
P = {(ri, ϕi, li)}, where ri is the polar radius, ϕi is the polar
angle, and li is the semantic label. Then we divide the point
cloud into Ns sectors according to the polar angle. Each sector
is defined by:

Si =

{
(r, l)

∣∣∣∣ i× 2π

Ns
− π ≤ ϕ <

(i+ 1)× 2π

Ns
− π

}
(5)

where i ∈ [0, Ns − 1], ∀(r, ϕ, l) ∈ P . For each sector Si, we
further divide it into Nl channels according to semantics:

Bij = {r|l = L(j), ∀(r, l) ∈ Si} (6)

where i ∈ [0, Ns − 1], j ∈ [0, Nl − 1], and L is the set of Nl

semantic labels. Finally, we obtain descriptor D ∈ RNs×Nl :

D(i, j) = E(Bij) = min
r∈Bij

(r) (7)

Function E encodes Bij as a scalar. We define E as taking
the minimum distance (‘road’ is special, taking the maximum
distance) to get the contour of the scene (Fig. 2(b)). Since the
laser of the traditional LiDAR cannot penetrate objects, the idea
of selecting the closest point is very intuitive. Notably, due
to discretization errors, our descriptors are not strictly rotation

equivariant, but this is harmless (proved in Section IV-B). Fig. 2
demonstrates the process of generating descriptors.

C. Rotation Invariant Neural Network

Rotation equivariant convolution: CNNs have always been
considered shift-equivariant (or rotation equivariant in our case).
However, some recent studies point out that stride is the key
reason why CNNs are not strictly shift equivariant. However,
restricting stride to 1 cannot achieve complete rotation equivari-
ant due to the influence of the boundary. In point clouds, 0 and
359 degrees are adjacent, but they are at the head and tail in de-
scriptors. An intuitive solution is to use circular convolution [39]
with a stride of 1.

We take the first layer of our network to explain how the
rotation equivariant convolution works. Suppose the input signal
is V ∈ RNs×Nl and the out put is V , the rotation equivariant
convolution is formulated as:

V (i) = (V ∗K)(i)

=

Nl−1∑
c=0

M∑
m=−M

V ((i−m) mod Ns, c)K(M +m, c)

(8)

where i ∈ [0, Ns − 1], and K ∈ R(2M+1)×Nl is the kernel.
However, the above rotation equivariant convolution cannot
downsample V . We need to design additional rotation equiv-
ariant downsampling operations.

Rotation equivariant downsampling: Downsampling can in-
crease the receptive field, aggregate features, and reduce the
subsequent calculation. However, the typical max pooling and
average pooling are not rotation equivariant. Using anti-aliasing-
based downsampling [37] that blurs the feature map before
downsampling, can alleviate this problem. But recent studies
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report that nonlinear functions will affect the effect of anti-
aliasing [38]. To achieve strict rotation equivariant, we adopt the
adaptive polyphase sampling (APS) method proposed in [38].

Suppose we need to downsample V ∈ RNs×Nl to V ∈
R

Ns
k ×Nl (Ns must be divisible by k). We first divide V into

k sub-vectors:

Vi = {V (j)|(Ns mod j) ≡ i, j ∈ [0, Ns − 1]} (9)

where i ∈ [0, k − 1]. Then downsampled V is defined as:

V = argmax
Vi

‖Vi‖1 (10)

where ‖ · ‖1 is L1 norm. Thus, rotation equivariance is strictly
ensured by taking sub-vector with the maximum L1 norm.

Rotation equivariant attention: As depicted in Section III-B
that each channel of the descriptor corresponds to different
semantic objects. Intuitively, different semantic objects have
different contributions to the whole scene representation. For
example, for humans, buildings are more distinguishable than
roads. Therefore, we propose the rotation equivariant attention
module, which gives different weights to each channel to en-
able our network to pay more attention to those representative
semantic objects. The following formula is used to calculate the
weight for each channel of V :

C = Sigmoid

((
1

Ns

Ns∑
i=1

V (i)

)
W + b

)
(11)

whereW ∈ RNl×Nl , b ∈ R
1×Nl are learnable weight matrix and

bias vector, respectively. Since we average all the entries of V ,
the output weight C is rotation invariant. Then we use C to
weight V to obtain the module’s output V :

V = V · CT (12)

It is easy to know that this module is rotation equivariant.
Feature extraction: As shown in the middle of Fig. 1, our

feature extraction network has two branches that share weights.
Each branch is formed by stacking sub-networks with the same
structure composed of several basic rotation equivariant modules
as introduced above. In each sub-network, we use the global
average pooling to obtain the rotation invariant feature vector.
Finally, we concatenate these feature vectors from different sub-
networks to form a global rotation invariant feature vector of
length Nf .

Similarity prediction: As shown in the right of Fig. 1, feature
vectors f1 and f2 are obtained after feature extraction, and their
similarity is calculated as:

score = Sigmoid(MLP(|f1 − f2|)) (13)

where | · | denotes absolute value. Thus the similarity score ∈
[0, 1] is invariant to the order of f1 and f2. The MLP consists of
two linear layers (288× 128, 128× 1) and a Leaky ReLU layer
in between.

SGPR [6] treats place recognition as a classification problem
and uses binary cross-entropy (BCE) loss to train the model.
However, we find that the model trained in this way tends to
output extreme scores. As shown in Fig. 3(a), the network will
give very high scores (close to 1) to some negative samples.
This will cause the recall rate of the network at 100% accuracy

Fig. 2. We first convert (a) The semantic point cloud to the polar coordinate.
Then we divide it into Ns sectors according to the polar angle. For each sector,
we split it into Nl channels based on semantics. In each channel, we keep the
points (b) With the smallest polar radius. Finally, we get (c) The descriptor
D ∈ RNs×Nl , each entry representing the polar radius of the corresponding
point.

Fig. 3. There are more extreme values in the predictions (a) When training the
network with the BCE loss. (b) Using the SBCE loss makes distribution more
desirable.

to be close to 0, which will seriously affect the performance.
We suppose that the network is more inclined to predict extreme
scores (very close to 0 or 1) as it is only given ground-truth labels
with a score of 0 or 1 during training. To solve this problem, we
adopt the soft binary-cross entropy (SBCE) loss, where the labels
are continuously distributed between 0 and 1. In our case, the
sample label is defined by the following formula:

label = 1− 1

1 + eλ(μ−δ)
(14)

where δ is the distance between the sample pairs. Fig. 4 shows the
influence of λ andμ on labels. As shown in Fig. 3(b), the network
trained with SBCE give a more reasonable score distribution (no
extreme scores are given when the classification is wrong) than
BCE.
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Fig. 4. Figure (a) Shows how the Equ.14 curve changes with the value of λ

while Figure (b) With µ.

IV. EXPERIMENTS

A. Dataset and Implementation Details

We evaluate on KITTI, KITTI-360, and NCLT datasets.
KITTI: The KITTI dataset contains 11 sequences (00 to 10)

with ground-truth poses, which is collected by a 64-beam LiDAR
(Velodyne HDL-64E) in Karlsruhe. Among all sequences, only
00, 02, 05, 06, 07, 08 contain loop closures, and only 08 has
reverse loop closures. For semantics, we adopt the ground truth
labels from SemanticKITTI dataset [40] (Ours-SK), which pro-
vides 28 categories. Following previous work [6], our descriptors
choose 12 of them (car, road, parking, sidewalk, other-ground,
building, fence, vegetation, trunk, terrain, pole, traffic-sign). To
test the robustness of our approach to noisy semantic predictions
which is common in real systems, we report the results of using
the predictions from Cylinder3D [41] (Ours-CY).

Following SGPR [6] training strategy, we adopt k-fold cross-
validation, where each sequence is considered as a fold. In the
testing phase, we follow the testing set in SSC [8] and ensure all
methods are evaluated on the same test data.

KITTI-360: The KITTI-360 and KITTI datasets are collected
in different places of the same city. KITTI-360 has 6 sequences
with loop closures (0000, 0002, 0004, 0005, 0006, 0009) and
is more challenging than KITTI due to the larger number of
reverse loop closures in each sequence. KITTI-360 provides
semantic labels for the whole map instead of each single point
cloud frame. So we use the semantic labels provided by SSC
open-sourced code, which are processed from the ground-truth
labels. In addition, we also evaluate with semantic predictions
provided by Cylinder3D.

Notably, we directly evaluate on KITTI-360 with the model
only trained on KITTI dataset.

NCLT: The NCLT dataset is collected at the University of
Michigan, which contains 27 sequences over 14 months. Differ-
ent from the KITTI and KITTI-360 datasets, NCLT is a long-
term dataset and equips a 32-beam LiDAR. The NCLT dataset
does not label semantics for the point clouds, and it is difficult
to perform transfer learning due to the large distribution gap.
To overcome the lack of semantics, we modify our descriptor,
by replacing the 12 semantic channels of the original descriptor
with dividing the point cloud into 12 parts by height (Ours-HE).
This descriptor is also used in ablation study Section IV-D.

For NCLT dataset, we follow the data splitting in DiSCO [9],
which splits each run into two disjoint parts for training and
testing. We use 6 runs (2012-03-17, 2012-05-26, 2012-06-15,
2012-08-20, 2012-09-28, 2012-10-28) for evaluation and the
rest runs to train our model. If the distance between the query and

retrieved scan is less than 1.5 m, the localization is considered
successful.

When training our model on KITTI and NCLT, every two
point clouds in the training sequences form a sample pair, and
we use the method in Section III-C to calculate their labels. We
set μ and λ in Eq. 14 to 10 and 2

3 , respectively. In Section III-B,
we set Ns = 360 and Nl = 12. Our feature extraction network
has a total of 6 layers and produces a feature vector of length
Nf = 288. Our code is based on PyTorch using Adam optimizer
with learning rate 0.02.

B. Place Recognition Performance

KITTI and KITTI-360: The precision-recall curve and the
maximum value of the F1 scores are used to measure the
performance. The F1 score is defined as follow, where P is
precision and R is recall.

F1 = 2× P ×R

P +R
(15)

We compare the proposed approach with the state-of-the-art
methods, including four non-learning methods (M2DP [3], Scan
Context [4] (SC), LiDAR Iris [5] (LI), and Semantic Scan
Context [8] (SSC)) and four learning-based methods (Point-
NetVLAD [25] (PV), SGPR [6], Locus [24], and DiSCO [9]). To
verify the generalization ability of our method, we use the model
trained on the KITTI dataset when testing on the KITTI-360
dataset.

As shown in Fig. 5 and Table I, our method performs well
on KITTI, surpassing other methods in the indicator of mean
F1 max score with a large margin. The results on sequence 08
are intriguing, as the loop closures in the training set are all
in the same direction, while sequence 08 only contains reverse
loop closures. Thanks to the strictly rotation invariant design,
our approach can still achieve good results on sequence 08 even
only trained on the loop closures in the same direction. The effect
of rotation/viewpoint changes is further proved in Section IV-C.
Note that our method only trained on KITTI achieves amazing
results even by directly testing on KITTI-360, showing the
strong generalization ability. The results of Ours-CY are worse
than that of Ours-SK as expected, but it is still very competitive,
which shows that our algorithm is robust to semantic predictions
containing noises. As we do not retrain the models when testing
Ours-CY but directly use the models from Ours-SK, this further
indicates our method’s strong generalization performance.

To visually show the effect of the attention module, we
randomly select 12 samples and draw the weights in Fig. 6.
The attention module assigns higher weights to ‘traffic-signs’
and ‘other-ground’. On the contrary, it assigns very low weights
to ‘road’ and ‘sidewalk’. This verifies our assumption in Sec-
tion III-C that our network can learn to weight different semantic
objects.

NCLT: The Average Recall@1 (AR@1) and Average Re-
call@1% (AR@1%) are used as metrics. We compare with
five advanced methods: Locus [24], PointNetVLAD [25] (PV),
Scan Context [4] (SC), OREOS [21], and DiSCO [9]. Note that
semantics are not available on NCLT, so we use geometric-based
descriptors instead. As shown in Table III, our method achieves
competitive results, which proves that our method is robust
to seasonal changes and can work well on different data. We
can expect that our method will perform better if semantics
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TABLE I
F1 MAX SCORES ON KITTI AND KITTI-360 DATASETS

All models are trained only on the KITTI dataset. The best scores are marked in bold and the second best scores are underlined.

TABLE II
ROBUSTNESS TEST

F1 max scores on KITTI dataset when the point cloud are randomly occluded 30◦ FoV and rotated around z-axis.
Cmp is the comparison with the standard results shown in Table I.

Fig. 5. Precision-Recall curves on KITTI and KITTI-360 datasets. Figure (a)-(c) shows the results on the KITTI dataset. Figure (d)-(f) shows the results on the
KITTI-360 dataset. The models used in all experiments are only trained on KITTI.
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Fig. 6. We randomly select 12 samples and draw the weights calculated
by the first attention module. The result reveals that our network focuses on
representative semantic objects.

TABLE III
AR@1 AND AR@1% ON NCLT DATASET

are available. The effect of semantics is further illustrated in
Section IV-D.

C. Robustness Test

We follow the experiments in SGPR [6] to test the robustness
of the proposed method. The following robustness test experi-
ments are all based on the KITTI dataset.

Occlusion: In the case of long-term and large-scale local-
ization, the occlusion of the scene is inevitable. To simulate
this situation, we randomly remove the points in a range of 30
degrees in the yaw direction of each point cloud. As shown
in Table II, our method still surpasses other methods in most
sequences. Our method has the least performance degradation
among all learning-based methods, and perform better than most
non-learning methods except SSC. This experiment proves that
our method is robust to occlusion.

Viewpoint Changes: Viewpoint change is another problem
that often arises in large-scale localization. We randomly rotate
the point cloud to simulate this situation. We design two experi-
ments to prove that only the step of generating descriptors in our
method is not strictly rotation equivariant. The first experiment
(Ours-SK) is the same as the other methods, randomly rotating
the point cloud. The second experiment (Ours-SK*) randomly
shifts the descriptors intead of rotating the point cloud. As shown
in Table II, Ours-SK are slightly inconsistent with the original
while Ours-SK* is strictly consistent with the original. It proves
that our network is strictly rotation invariant, while our descrip-
tor is approximately rotation equivariant due to the discretization
error during projection. Our method is more robust to rotation
among all learning-based methods. DiSCO [9] transforms the
feature map to the frequency domain to achieve rotation in-
variance. However, due to the use of ordinary convolutional
neural networks before FFT, their network is not strictly rotation
invariant. Whilst, due to the influence of discretization, their
descriptors are not strictly rotation equivariant either.

TABLE IV
CONTRIBUTION OF INDIVIDUAL COMPONENTS

TABLE V
TIME COST ON KITTI 08

The time unit is in second and GPU consumption is in MB.

D. Ablation Study

To specify the individual contribution of each component, we
design the ablation study on the KITTI dataset. In the experi-
ment, we randomly shift the descriptors to explore the influence
of each component on the rotation invariance of the network. To
explore the effects of rotation equivariant convolution (RIConv)
and rotation equivariant downsampling (RIPool), we replace
them with typical convolution (the same kernel size and stride as
our RIConv) and average pooling (the same downsampling rate
as our RIPool), respectively. To verify the effects of the rotation
equivariant attention module (RIAtten), we directly remove it
from the network. We use the geometry-based descriptor pro-
posed for NCLT (Ours-HE Section IV-A) to explore the contri-
bution of semantics. As shown in Table IV, the average F1 max
scores decrease by 0.096 and 0.035, respectively, when using
typical convolution and pooling. It is easy to know that typical
convolution and pooling operations will destroy the rotation
invariance of the network. The averageF1 max score drops 0.017
when the rotation equivariant attention module is removed. As
demonstrated in Section IV-B, the attention module enables the
network to pay more attention to representative semantic objects.
When using height-based descriptors (Ours-HE), the averageF1

max score is reduced by 0.052, showing that semantics can help
generate more representative descriptors.

E. Efficiency

We report the efficiency of learning-based methods on
KITTI’s sequence 08. All experiments are conducted on the
same computer with an Intel Core i7-9700 and an NVIDIA
GeForce GTX 1080 Ti GPU. For each method, we count the time
required for extracting features from all the sequence 08 frames
(Description) and scoring all candidate pairs (Retrieval). We test
our method on GPU (Ours) and CPU (Ours-CPU) separately,
while all other methods are tested on the GPU. As shown in
Table V, our method is faster than other methods in all stages.
Our method takes a total of 0.211 s to complete the evaluation
of KITTI’s sequence 08, of which it takes 0.200 s to extract the
features from 4071 descriptors (about 20,000 FPS) and 0.011 s to
evaluate the similarities of 201394 feature pairs. On the CPU, our
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method takes 0.626 s to complete the entire experiment, of which
0.495 s (about 8000 FPS) is used to extract features, and 0.131 s
is used to calculate similarity. In addition, our method requires
very little GPU memory. When the batch size is 4071, only
2188 M GPU memory is required. The above results indicate
that our method is promising in mobile robot platforms with
constrained resources.

V. CONCLUSION

This paper proposes RINet, an efficient network for 3D
Lidar-Based Place Recognition, which is structurally robust to
viewpoint changes. Specifically, a novel rotation equivariant
global descriptor is firstly proposed by combining semantic and
geometric features, and then a lightweight siamese network is
applied, including three basic rotation invariant modules: rota-
tion equivariant convolution, downsampling and attention. Ben-
efiting from the structurally rotation invariant design, the pro-
posed approach achieves advanced performance on the KITTI,
KITTI-360, and NCLT datasets while operating very efficiently.
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