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Abstract Deep neural networks (DNNs) have strong

fitting ability on a variety of computer vision tasks,

but they also require intensive computing power and

large storage space, which are not always available in

portable smart devices. Although a lot of studies have

contributed to the compression of image classification

networks, there are few model compression algorithms

for object detection models. In this paper, we propose

a general compression pipeline for one-stage object de-

tection networks to meet the real-time requirements.

Firstly, we propose a softer pruning strategy on the

backbone to reduce the number of filters. Compared

with original direct pruning, our method can maintain

the integrity of network structure and reduce the drop

of accuracy. Secondly, we transfer the knowledge of the

original model to the small model by knowledge distil-
lation to reduce the accuracy drop caused by pruning.

Finally, as edge devices are more suitable for integer op-

erations, we further transform the 32-bit floating point

model into the 8-bit integer model through quantiza-

tion. With this pipeline, the model size and inference

time are compressed to 10% or less of the original, while

the mAP is only reduced by 2.5% or less. We verified

that performance of the compression pipeline on the

Pascal VOC dataset.
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1 Introduction

Recently, due to the improvement of computing power,

convolutional neural networks have become mainstream

models for various tasks in computer vision. Along with

the constantly increasing accuracy, FLOPs and param-

eters of the networks are also rising. Unlike large servers

in the laboratories that contain multiple GPUs, smart

devices, such as mobile phones, drones, or smart cam-

eras for autonomous driving, cannot directly run a va-

riety of high-precision complex DNN models directly.

One of solutions is to transfer the data obtained locally

to the large server via the Internet, then calculate the

result and transfer it back to the local devices. This

idea is a common method for the early implementation

of neural network models, but the problems brought by

this method are the impact of delay and instability of

wireless network transmission. Besides, this approach

requires lots of expensive communication base stations,

which leads to high costs. Another approach is to de-

sign more efficient hardware accelerators to reduce the

inference time on the local side [1,2,3]. Our method is

to design a model compression pipeline, which greatly

reduce the size and influence time at the cost of minimal

accuracy drop.

There are a lot of redundancies in the DNNs. The

existence of unnecessary weights will not only increase

the amount of calculation, but also make the model

overfit. The proposed model compression pipeline in-

cludes the following methods: Pruning, Knowledge Dis-

tillation, and Quantization, as shown in Figure 1.

Pruning. At present, the most popular pruning al-

gorithm is channel pruning. The advantage of this prun-

ing method is that the overall architecture does not

change. What we need to do is to change the number of

filters in each convolutional layer. This method is very
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Fig. 1: The compression pipeline for one-stage object detection model. The four blocks represent the process of

original training, pruning, knowledge distillation and quantization.

convenient and can be perfectly combined with subse-

quent knowledge distillation and quantization. Howev-

er, one of the problems of channel pruning is that some

layers may be completely cut off by adopting the global

criteria because of the imbalance of weight distribution.

This would destroy the original structure and is not con-

ducive to the construction of model and fine-tuning. We

have optimized this situation in our pipeline.

Knowledge Distillation. Knowledge distillation

is to transfer the knowledge learned by a teacher net-

work (large, complex, and high accuracy) to a student

network (lightweight, simple, and low accuracy), so that

the student network can learn more knowledge and im-

prove the representation ability. With knowledge distil-

lation the network performance can be improved with-
out changing the network structure. In our pipeline, the

original large network is the teacher net, and the pruned

network is the student net.

Quantization. Generally speaking, the parame-

ters of neural network models are all 32-bit floating-

point (FP-32) numbers. However, a large number

of experiments have proved that FP-32 weights are

unnecessary[4]. Floating-point weights in the network

can be replaced with 8-bit integer (Int-8) parameters,

which can greatly reduce the storage space of the mod-

el. Post-training quantization is to directly perform the

8-bit quantization operation on the model obtained af-

ter traditional training. One problem with this is that it

may cause a sharp decline in the accuracy of lightweight

network. Another method is quantization-aware train-

ing, which is to insert quantization nodes in the network

during training. When we input training data into the

network, the existence of quantized nodes is taken into

account to simulate the forward propagation of Int-8 for

quantitative training. After quantization-aware train-

ing, we can obtain an Int-8 model with less accuracy

drop.

In fact, the effect of using the above algorithms

alone is limited. we can use pruning method to ob-

tain a lightweight model that is only 10% to 20% of

the original model size, but there will be a great loss of

accuracy. Knowledge distillation is a choice to improve

the accuracy of slim network. If we design a slim net-

work at will for knowledge distillation, it’s difficult to

achieve the desired accuracy as well. Quantization can

only make the model size become 25% of the original,

and cannot continue to reduce the model size. There-

fore, we combine the three methods together to achieve

the best effect.

At present, many studies mainly consider pruning

and quantization for model compression. These two

methods can directly reduce the model size and infer-

ence time. However, it would lead to a large drop of

accuracy if we directly apply the current image classifi-

cation pruning algorithm to object detection model and

quantized to Int-8 model. The reason is that the fitting

ability of pruned model is limited, resulting in a lower

accuracy of the quantized lightweight model. Therefore,

how to reduce the accuracy loss caused by pruning be-

comes the top priority. Comparing with other classical

pruning methods, our pruning method has obvious ad-

vantages in mAP. Our general knowledge distillation

strategy can further reduce the loss of precision.

In this paper, we take SSD[5] and YoloV3[6] as re-

search objects and select VGG16[7] as basic backbone.

First, we train an original model and then prune it in

the channel dimension. As the criterion of pruning, we

borrow the idea of Liu et al.[8], which uses the scale

factors in Batch Normalization[9] layers to measure the

importance of channels. On this basis we add another
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determining factor in each Batch Normalization layer to

make the network structure more complete and achieve

the purpose of soft pruning. Furthermore, we use an

iterative pruning strategy, pruning a small part per

time until we get the desired slim model. Experiments

show that our pruning strategy can minimize the ac-

curacy degradation. And next, we use the original net-

work and the pruned network for knowledge distillation.

In terms of knowledge distillation, our thought is that

both the teacher network and the student network have

their characteristics, and the teacher network can also

learn from the student network what it cannot learn in

a traditional training scheme. In this way, they both

can achieve better performance through mutual knowl-

edge distillation. We aim to make this series of methods

as general as possible and reduce unnecessary process

of tuning hyperparameters. This idea first comes from

Zhang et al.[10], but that strategy is only for image

classification. However, the loss function of object de-

tection network is much more complicated than that of

image classification. We make further optimization and

propose a knowledge distillation loss function for one-

stage object detection network. Finally, we use the dis-

tilled lightweight model for quantization-aware training

and convert it to Int-8 model. The changes of various

indicators during the model compression process are

shown in Figure 2. It can be seen from the figure that

the model size and inference time are fully compressed

with little sacrifice for the mAP.

In general, the contribution of this paper can be

summarized as follows:

– We propose a new channel pruning optimization s-

trategy, which ensures pruning can achieve better

performance without destroying the structure of o-

riginal network.

– We propose a general knowledge distillation method

for object detection model, which can alleviate the

accuracy drop caused by pruning.

– We propose a model compression pipeline for one-

stage object detection network to meet the real-time

requirements. For other one-stage networks such as

DSSD[11], RefineDet[12], M2Det[13], etc, we can

still use the pipeline to facilitate the deployment of

them.

2 Related Work

Object Detection Model. The object detection net-

work can be divided into two types. One is the two-

stage type network. This type is mainly represented

by RCNN[14], Fast-RCNN[15], and Faster-RCNN[16].

The two-stage network first extracts candidate frames

(a) SSD

(b) YoloV3

Fig. 2: Changes of model size, inference time and mAP

during the process of model compression.

that may have objects, and then fine-tunes the bound-

ing boxes on the candidate frames and determine the

classification result. The accuracy of this algorithm is

generally higher, but inference time is longer and does
not meet our real-time needs. Another type is the one-

stage type network, which is represented by SSD and

Yolo[17]. Later, Redmon et al. proposed YoloV2[18] and

YoloV3[6] on the basis of Yolo. The classification of this

network and the regression of the bounding box pro-

ceed simultaneously. This algorithm can achieve higher

speed. On the premise that the backbone is VGG16, the

weight storage space of Faster-RCNN exceeds 500M,

while neither SSD nor YoloV3 exceeds 150M. In addi-

tion, the speed of Faster-RCNN is only one-fifth of SSD

and the accuracy is not as good as SSD and YoloV3.

Pruning. Han et al.[19] proposed to determine the

unimportant connections in the trained network accord-

ing to the size of the neuron connection weight to reduce

the parameters required by the network. Molchanov et

al.[20] pointed out that choosing an optimal combina-

tion from the weight parameters minimizes the loss of

the cost function of the pruned model. Li et al.[21] pro-

posed that by using the L1 norm digital evaluation cri-

teria to calculate the convolution kernel, some channels
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with smaller L1 norms were cut out, and the conclusion

was obtained through pruning experiments. Pruning

the VGG-16 network based on the L1 norm obtained

34% accelerating, ResNet101 achieved a 38% accelera-

tion. Hu et al.[22] considered neurons with an activation

value of 0 to be redundant and proposed a statistical-

based method to delete units that output zero values

for most different inputs and perform alternate retrain-

ing. Wei et al.[23] introduced the LASSO regular penal-

ty term and constructed different sparse loss function-

s through different concrete forms to make the model

more sparse. He et al.[24] pointed out that ”smaller-

norm-less-important” is inadequate because the distri-

bution deviation of the norm data must be large enough

to ensure that it is in a wide range of distributions.

The paper proposed that those filters located at or n-

ear the geometric median contain redundant informa-

tion. Therefore, they can be effectively subtracted and

replaced with the remaining filters.

Knowledge Distillation. The currently designed

knowledge distillation is mainly applied on the image

classification model. Hinton[25] first proposed the con-

cept of knowledge distillation. For the first time, the

output of the teacher network is treated as a soft target

as part of the total loss (the other part is the cross-

entropy corresponding to the hard target) to guide

the training of the student network to achieve knowl-

edge transfer. The validity of the knowledge distilla-

tion method was verified by experiments. Romero et

al.[26] proposed adding a supervised learning signal in

the middle of the deep neural network model, requir-

ing the middle layer activation response of the student

model and the teacher model to be as consistent as pos-

sible to achieve the purpose of knowledge distillation.

Zagoruyko et al.[27] proposed that the soft target to

guide student network training can be final output or

attention maps. In other words, not only the output

probability distribution of the teacher and student net-

work is similar, but also the intermediate activation and

The activation of the original image is similar, and the

effects of the two knowledge transfers can be superim-

posed. Xu et al.[28] proposed that GAN and Knowledge

Distillation can be combined and achieved good results.

Yim et al.[29] proposed the concept of the FSP matrix,

which is the relationship between two layers of feature

maps of a convolutional network. The knowledge of the

teacher network is extracted in the form of several FSP

matrices. To minimize the difference between the FSP

matrix of the teacher network and the student network,

the knowledge is distilled from the teacher to the stu-

dents.

Quantization. Vanhoucke et al.[30] proposed that

the model with the weights set to 8 bits can signifi-

cantly increase the speed of reasoning and not cause

much loss of accuracy. Jacob et al.[31] proposed Int-

8 quantization and introduced a quantization method

that uses only integer operations, which is more effi-

cient than floating-point operations. Raghuraman[32]

introduced Google’s research on model quantification.

And Post-quantification and Quantization-aware train-

ing were systematically explained for the first time. Af-

ter quantization, the model takes up 75% of storage s-

pace. If the model consists mainly of convolutional lay-

ers, the execution speed is increased by 10-50%. Re-

duced memory and computing power requirements also

mean that the power consumption of most models will

be significantly reduced.

3 Compression Pipeline

In this section, we elaborate on the compression algo-

rithm, including Pruning, Knowledge Distillation, and

Quantization.

3.1 Pruning

Just as that paper by Liu[8], due to the role of Batch

Normalization layers in neural network, the absolute

value of scale factor γ of Batch Normalization layers

can reflect the importance of each channel. Here, we use

some actual statistics to intuitively reflect the impact

of γ on the channels of feature maps.

As shown in Figure 4, we select the 11th Batch

Normalization layers in the SSD network for statistics

and comparison. We use the L1 norm to quantify and
analyze each channel of feature map. It can be seen

that the L1 norm of feature map obtained after the 11th

convolution layer is hardly distributed near 0. However,

due to the role of subsequent Batch Normalization layer

in which many scale factors are distributed around 0,

the feature map has a large number of channels with a

minimum L1 norm. According to our statistics chart of

all channels in the SSD network, as shown in Figure 3,

it can be seen that there are at least 1/3 of scale factors

whose absolute values are less than 0.2, and we can

start pruning from this part. We list absolute values of

all scale factors in the entire network as G:

G = {|γ1| , |γ2| , ..., |γn|} (1)

where n represents the number of all channels in the en-

tire network. In G, we can find a relatively small thresh-

old by setting a pruning rate and define it as Θ. The

scale factor whose absolute value is smaller than Θ can

be pruned.
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(a) SSD.

(b) YoloV3.

Fig. 3: Distribution of all the scale factors in SSD and

YoloV3. The horizontal axis represents the absolute val-

ue of the scale factor. The vertical axis represents the

number of a certain scale factor. The yellow part indi-

cates that the scale factor is less than Θ, which should

be pruned. The following figure is the same.

In order to obtain a better fitting ability, we use an

iterative pruning strategy. After multiple iterations of

pruning and fine-tuning, the slim network we achieve

meets our expectations and we can also acquire a rel-

atively smaller loss of accuracy. This method is proved

to be effective in our experiment.

Considering the uneven distribution of scale factors,

some convolutional layers may be cut off as pruning

continues. This would cause a great loss of accuracy. As

shown in Figure 5, original pruning would change the

structure of network too much. What we want is not to

cut off a certain convolutional layer, but only to reduce

part of filters per layer. If we change the structure too

much, it would cause a large change in the gradient

in terms of the chain derivative rules. Eventually, the

model would take a longer time to fine-tune, and the

accuracy would decrease too much. In addition, for the

scale factors in Batch Normalization layers, we need to

not only consider their role globally, but also consider

their role in current layer. Here, we set another scale

factor threshold list ϑ to keep the integrity of network

(a) Feature maps after Conv11.

(b) Scale factors of the 11th Batch Normaliza-
tion layer.

(c) Feature maps after BN11.

Fig. 4: The effect of the 11th Batch Normalization layer

on feature map.

structure:

ϑ = {θ1, θ2, ..., θN} (2)

where

θi = α×max({γi1, γi2, ...γic}) (3)

N represents the number of convolutional layers and α

is greater than 0 and less than 1. For the i-th Batch

Normalization layer, we set another threshold θi. For

example, we can cut out the channel whose correspond-

ing absolute value of scale factor is not only smaller

than the Θ but also smaller than the threshold θi. This

has two purposes. One is that we can keep at least a

small part of channels after pruning to prevent some

convolutional layers from being completely cut off. We
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Fig. 5: Problems without ϑ. The length of the blue part

represents the number of kernels in convolutional lay-

er. According to the pruning strategy of liu, the 6-th

convolutional layer will be completely cut off.

think that the practice of liu causes the relationship

between the channels in each layer to be completely de-

stroyed, and our method can alleviate it to some extent.

The other is that we can achieve a softer pruning, which

improves the accuracy of the pruning network. We ver-

ify the effectiveness of this method in experiments. The

entire pruning process can be represented by Algorithm

1.

Algorithm 1 Pruning.

Input: OriginalModel
Output: SlimModel
1: Extract the scale factors of all Batch Normalization layers

and list them into G = {|γ1| |γ2| ... |γn|}
2: Set the pruning rate and obtain Θ in G
3: Find out the threshold of each BN layer to list into ϑ =
{θ1 θ2... θN}

4: for all γj in G do
5: Suppose γj ∈ the i Batch Normalization layer
6: if γj<Θ and γj<θi then
7: Keep the channel j
8: else
9: Delete the channel j

10: end if
11: end for
12: Fine-tuning
13: return Slimmodel;

3.2 Knowledge Distillation

Compared with the original network, the accuracy of

the slim model after pruning drops a little. Knowledge

distillation is an effective way to make up for the loss of

accuracy. The first method of knowledge distillation[25]

is to transfer knowledge from a large pretrained network

to a small network. In the process of backpropagation

of the small network, we can use the following equation

to express the final loss function of the small model.

Losstotal = Lossoriginal + λ ∗ Losskd (4)

In the equation, Losstotal, Lossoriginal, Losskd repre-

sent the final loss function, the original loss function

and the output difference between the small network

and the large network respectively. λ is a weight coeffi-

cient that we need to adjust.

The first proposal of mutual learning was from

Zhang et al.[10]. Mutual learning is the collaborative

training of two networks. That is, student network can

also guide the training of teacher network. We can use

Net−1 and Net−2 to represent the large network and

small network, and the calculation of their total loss in

mutual learning is as follows:

Losstotal1 = Lossoriginal1 + Losskd1 (5)

Losstotal2 = Lossoriginal2 + Losskd2 (6)

In mutual learning, both Net − 1 and Net − 2 partic-

ipate in the backpropagation process. Compared with

the original one-way knowledge distillation, λ in mutu-

al learning is a constant value, which can reduce a lot

of tuning time.

In the image classification task, we input Batchsize

training data into network and get the output whose

shape is Batchsize × Classes. We use cross-entropy as

the loss function for optimization. Kullback − Leibler
(KL) divergence [33] is often used to describe the dif-

ference between two probability distributions. We can

input the same data into the two networks and cal-

culate the KL divergence of the output. By using KL

divergence as a part of the loss function and backpropa-

gation, we can make the output of two networks tend to

be consistent, thus completing the distillation of knowl-

edge. The calculation of KL divergence is as follows:

KL(P ||Q) =
∑

P (x)log
P (x)

Q(x)
(7)

where P and Q represent two different probability dis-

tributions and their shape is Batchsize × Classes. We

combine KL divergence of the two distributions and o-

riginal cross-entropy to get total loss.

For SSD, the input is also batch samples, and we can

get regression output and classification output. Object

detection with SSD is based on prior boxes. We set a

series of prior boxes on each pixel of different scale fea-

ture maps, and then let each prior box correspond to
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coordinate regression and classification. For example,

assuming that there are I feature maps for regression

and classification output, and the size of the i feature

map is hi×wi, each pixel of the feature map correspond-

s to ni different prior boxes. Then, each prior box on

the feature map corresponds to four coordinate values

and classification output through convolution. There-

fore, the total number of prior boxes is
∑I

i hi×wi×ni,
and we can use NumPriorBoxes to represent it. D-

ifferent from image classification task, one image data

in SSD corresponds to NumPriorBoxes outputs. The

output’s shape of classification is NumPriorBoxes ×
Classes, another isNumPriorBoxes× 4. Even if there

areNumPriorBoxes prior boxes in one image data, on-

ly positive and negative samples are considered when

calculating total loss. The positive sample is the pri-

or boxes whose IOU with GroundTruth is greater than

0.5, and the negative sample is the prior boxes with

lower IOU and larger classification loss. Since the coor-

dinates of prior boxes are fixed, the selection of positive

samples is always constant for a certain image data re-

gardless of the training state. In contrast, the selection

of negative samples is dynamic and related to network

parameters. In our experiment, we have found that only

distilling knowledge on classification branch can achieve

the best effect. Considering that the output of the re-

gression branch is non-discrete, we cannot simply use

KL divergence to characterize the difference of their dis-

tribution. Chen[34] conducted knowledge distillation on

Faster RCNN and proposed a regression-based distilla-

tion algorithm, but after testing that method on SSD

and YoloV3, we found that the effect is not as good as

the effect of knowledge distillation only on classification

branch.

In SSD, the definition of total loss can be written as

follows:

Loss =
1

Npos
(Lconf (p, plabel) + αLloc(l, llabel)) (8)

where

Lconf (p, plabel) =

Npos+Nneg∑
i=1

CE(pi, plabel) (9)

Npos and Nneg denote the number of positives and neg-

ative samples. p and plabel represent the output of classi-

fication and label of each prior box. l and llabel represent

the output of regression and regression label of each pri-

or box. Lloc represents the smooth L1 loss function of

the regression part. CE represents the Cross−Entropy
loss function. Different from image classification based

on each image as the object, the loss function of SSD

is based on the prior boxes. Since the choice of positive

samples is not directly related to the model, we choose

positive samples for knowledge distillation. The nega-

tive samples for different networks are different, so we

cannot guarantee their consistency. That’s the key of

knowledge distillation for object detection network.

Lconf (p1, plabel) =

Npos+Nneg∑
i=1

CE(p1i , plabel) +KL(p2||p1)

=

Npos+Nneg∑
i=1

CE(p1i , plabel) +

Npos∑
j=1

p2j log(
p2j
p1j

)

(10)

Lconf (p2, plabel) =

Npos+Nneg∑
i=1

CE(p2i , plabel) +KL(p1||p2)

=

Npos+Nneg∑
i=1

CE(p2i , plabel) +

Npos∑
j=1

p1j log(
p1j
p2j

)

(11)

For YoloV3, the loss function of distillation is similar

to SSD. The only difference is that YoloV3 has an ad-

ditional branch of object confidence. So we have to add

this branch when designing the knowledge distillation

loss function. The calculation formula is consistent with

SSD.

A more specific knowledge distillation process is

shown in Algorithm 2.

Algorithm 2 Knowledge Distillation.

Input: OriginalModel(Net1), SlimModel(Net2)
1: for all iter in Total Iters do
2: Input training data x to two models

p1, l1 = Net1(x)

p2, l2 = Net2(x)

3: Calculate total loss of Net1 by Equation (5) and (7)
4: Update the weight of Net1
5: Re-input same training data to Net1

p1, l1 = Net1(x)

6: Calculate total loss of Net2 by Equation (5) and (8)
7: Update the weight of Net2
8: end for
9: return DistilledOriginalModel,DistilledSlimModel;

3.3 Quantization

For the over-parameterized neural network model, we

can directly perform FP-32 to Int-8 quantization with

less accuracy drop. Considering the relatively low ro-

bustness of the slim model, we cannot directly convert
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it into Int-8 integer model. Quantization-aware training

could achieve good performance in lightweight models.

We embed fake quantization nodes in identifiable op-

erations. These nodes are used to count the maximum

and minimum values of data flowing through this n-

ode during training. This training process just simu-

lates the quantization process and we don’t implement

quantization. Its forward calculation and backpropaga-

tion process still use FP-32 for calculation. At the end

of training, we convert it into Int-8 model to achieve

better performance.

The quantization formula from floating point to the

fixed point is as follows:

Q = round(
R

S
) + Z (12)

The formula for inverse quantization from fixed point

to floating point is as follows:

R = (Q− Z)× S (13)

where R is a floating-point value, Q is a quantized fixed-

point value, Z is a quantized fixed-point value corre-

sponding to zero floating-point value and S is the mini-

mum scale that can be expressed after fixed-point quan-

tization. round is the operation of converting a floating-

point type to an integer type. The calculation of S and

Z are as follows:

S =
Rmax −Rmin

Qmax −Qmin
(14)

and

Z = Qmax − round(
Rmax

S
) (15)

where Rmax represents the largest floating-point value,

Rmin represents the smallest floating-point value, Qmax

represents the largest fixed-point value (This value is

255 in our method ), and Qmin represents the smallest

fixed-point value (This value is 0 in our method ).

In the above calculation process, the round step is

the core source of quantization loss. We can explain

this phenomenon with a simple example. As shown in

Figure 6, floating point values are linearly mapped to

integer values via Equation 9, but there is a deviation

in this process which can be reflected when it is mapped

back to floating point values. Each convolutional layer

has such a deviation, which eventually cause a large de-

crease in accuracy. In the training process, we insert the

quantization node to embed the above process and use

the optimizer to optimize the loss due to quantization.

Other than that, each Batch Normalization layer

needs to be fused with the convolution layer. The specif-

ic algorithm formula is as follows. Changing the weight

and offset value makes the new convolution layer not

Fig. 6: Example of fake quantization nodes for

Quantization-aware training.

only complete the role of the original convolution but

also the work of the Batch Normalization. The calcu-

lation of the convolution layer can be expressed as the

following formula:

y1 = w ∗ x+ b (16)

where w, x, and b represent the weight, input, and

bias of convolutional layer respectively. y1 represents

the output of convolutional layer. Considering the role

of the Batch Normalization layer, we can directly get

the output after merging as:

y = γ × y1 − µ√
δ2 + ε

+ β (17)

y = γ × (
(w ∗ x+ b)− µ√

δ2 + ε
) + β (18)

y =
γ × w√
δ2 + ε

∗ x+
γ × (b− µ)√

δ2 + ε
+ β (19)

Among them, γ, β represent the scale factor and bias

factor of the BN layer. µ and δ represent the mean and

variance of y1. y represents the output of the BN layer.

ε is to prevent the denominator from being 0 and its

value is set to 1e-5. And then, we can get the weight

and bias of the final merged convolutional layer.

wmerged = w × γ√
δ2 + ε

(20)

bmerged = (b− µ)× γ√
δ2 + ε

+ β (21)

The quantization algorithm is shown in Algorithm 3.
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Algorithm 3 Quantization.

Input: DistilledSlimModel
Output: Int− 8Model
1: Fold Batch Normalization layers into convolutional layers
2: Insert fake quantization nodes for the Slim Model
3: for all iter in Total Iters do
4: Input training samples to the model.
5: Forward propagation.
6: Calculate the total loss.
7: Calculate the gradient and update the parameters.
8: end for
9: Convert to Int-8 Slim Model.

10: return Int− 8Model;

4 Experimental Results

In this section, we elaborate on the experiments per-

formed. The object detection networks are SSD and

YoloV3, and the backbone is VGG16. We choose VOC

dataset as the research object. Our server hardware

mainly includes 3 × NV IDIA TITAN XP GPU (12

GB video memory) and Intel Core i7 − 9700k CPU

(3.6 GHz). All test parts are carried out on the CPU.

Some training parameters are shown in TABLE 1.

Table 1: Hyperparameters setting during training

Experiment Batch Size Epoch LR

Original Training 32
1-120

121-160
161-200

1.E-3
1.E-4
1.E-5

Pruning (Fine-tuning) 32
1-30
31-40
41-50

1.E-3
1.E-4
1.E-5

Knowledge Distillation 32
1-30
31-50

1.E-4
1.E-5

Quantization-aware Training 32 1-20 1.E-5

4.1 Pruning

As shown in the previous pruning algorithm, firstly we

need to train an original model with high accuracy. On

this basis, iterative pruning is performed. We only cut

a small part at a time, which can minimize accuracy

drop. The size of the pruning parts depends on the set

threshold Θ in G. In our experiment, we set the pruning

ratio of each time as 0.2. The results of the pruning

process are shown in the following table.

From TABLE 2, we can see that after each prun-

ing, the amount of network parameters is greatly re-

duced, especially YoloV3. Because the FPN structure

of YoloV3 has a high degree of redundancy, the mod-

el size of pruned model changes more than SSD. After

pruning, model size of YoloV3 is only 20% of original.

Considering the mechanical superposition of 3× 3 con-

volutional layers, there are a lot of redundant parts.

For such a network with a high degree of redundancy,

the method of pruning can cut off unnecessary parts

without affecting too much accuracy.

In addition, the reduction of inference time by prun-

ing is obvious. For the sake of fairness, we use CPU for

speed measurement. It cound be clearly seen that the

inference time of the network also decreases during the

pruning process.

As for accuracy, we find that compared to model

size, the reduction of accuracy is negligible after the

fourth pruning. However, after the fifth pruning, the

mAP of both yolov3 and SSD has been greatly reduced

while model size does not change much. So we choose

the model after the fourth pruning for knowledge distil-

lation and quantization. Also, we mentioned earlier that

redundant parameters in the network not only increase

the amount of calculation but also affect the accuracy.

Whether YoloV3 or SSD, we verify the correctness of

this conclusion after the first pruning.

4.2 Knowledge Distillation

We use the pruned network and the original network

for knowledge distillation. This process is a little time-

consuming. Because normal training only needs one for-

ward propagation and one backpropagation, and knowl-

edge distillation requires three forward propagations

and two backpropagations. During network training,

we put both networks on the GPU, which undoubt-

edly requires a lot of video memory. In addition, since

we inherit the originally trained parameters before dis-

tillation, so it is necessary to ensure that the learning

rate is a relatively low value during distillation. The

final result is shown in the table below.

From TABLE 3, we can see that with the progress

of distillation, the accuracy is significantly improved

compared to the original, which verifies the effectiveness

of the distillation algorithm. Moreover, the accuracy of

our original network has also increased significantly, e-

specially YoloV3. After the network distillation after

pruning, the mAP has increased by 1.2% compared to

the original, which can not be achieved by ordinary

distillation methods. The most convenient is that the

entire process does not need to adjust hyperparameters.

4.3 Quantization

We insert quantization nodes on the slim model after

distillation and then perform quantization-aware train-

ing. Considering that the process of the quantization
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Table 2: Result of pruning

Model ModelSize(MB) RelativeChange InferenceTime(s) RelativeChange mAP(%) RelativeChange

SSD

Baseline 105.2 0.00% 1.26 0.00% 76.27 0.00%
Iter-1 77.4 -26.43% 0.97 -23.02% 77.03 1.00%
Iter-2 62.2 -40.87% 0.73 -42.06% 76.27 0.00%
Iter-3 52.7 -49.90% 0.55 -56.35% 75.84 -0.56%
Iter-4 46.3 -55.99% 0.485 -61.51% 75.18 -1.43%
Iter-5 41.1 -60.93% 0.47 -62.70% 71.78 -5.89%
Iter-6 39.2 -62.73% 0.46 -63.49% 65.79 -13.74%

YoloV3

Baseline 142.1 0.00% 1.16 0.00% 78.03 0.00%
Iter-1 97.8 -31.18% 0.68 -41.38% 78.09 0.08%
Iter-2 68.8 -51.58% 0.56 -51.72% 77.75 -0.36%
Iter-3 40.3 -71.64% 0.46 -60.34% 76.21 -2.33%
Iter-4 26.4 -81.42% 0.37 -68.10% 75.44 -3.32%
Iter-5 17.7 -87.54% 0.32 -72.41% 73.16 -6.24%
Iter-6 14.7 -89.66% 0.27 -76.72% 70.44 -9.73%

Table 3: Result of knowledge distillation

Model Network ModelSize(MB) Original mAP(%) Distilled mAP(%)

SSD
Baseline 105.2 76.27 76.96
Pruned 46.3 75.18 75.65

YoloV3
Baseline 142.1 78.03 79.28
Pruned 26.4 75.44 76.21

and inverse quantization of weights during training re-

quires a lot of computer operation time, so in every

training step, quantization-aware training takes longer

than ordinary training. After training, we directly con-

vert it to Int-8 model. The result is shown in the fol-

lowing table.

From TABLE 4, we can see that the storage size of

the final model obtained after quantization is about 1/4

of the original network. This has been greatly reduced

in storage size. In addition, comparing to the FP-32

model, our Int-8 model shows a slight decrease in mAP.

But comparing to the change in the size of the network

storage, this drop is minimal. As for inference time,

we can see that the inference speed of both networks

has been accelerated by 2-3 times. At the same time,

we also conduct a comparative experiment between di-

rect quantization and quantization-aware training, and

conclude that the final model trained by quantization-

aware training is 4 to 5 percentage points higher. This

is exactly in line with our previous thought.

4.4 Comparative Experiment

Comparative experiment of pruning. We re-

produce other pruning methods on YoloV3 and

SSD, including Network-Slimming[8], L1-norm[21] ,

Rethinking-Pruning[35] and FPGM[24]. Since the

above methods were performed on Image classification

models, we migrate them to object detection networks.

After a series of pruning, we obtain lightweight mod-

els and make sure that the parameters of these model-

s are consistent. From TABLE 5, we can clearly see

that even with the same judgment criteria, the pruned

model’s mAP obtained by our method is much higher

than Network-Slimming. This shows that adding ϑ to

the pruning process can not only ensure a more com-

plete network, but also increase the accuracy. Compar-

ing with the latest channel pruning method FPGM, our

method also obtains higher accuracy.

Comparison with the original network. The

comparison result is shown in TABLE 6. Compared

with the original model, our model is compressed to the

extreme without losing too much accuracy. The final

SSD model is compressed to only 11% of original model

size, and YoloV3 is compressed to only 4.7% of original.

In terms of inference speed, SSD and YoloV3 are only

10% of original. These particularly obvious compression

effects are completed with only a loss of up to 3% mAP.

4.5 Demo

In order to intuitively show the practicality of this

pipeline for model compression, we randomly select

three images for testing and make demos as shown in

Figure 7. There is almost no difference between the

original networks and the compressed network in spe-

cific tests. However, storage size and inference time of

the model we get has been greatly reduced. This effect

is what we expect.
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Table 4: Result of quantization

Model ModelSize(MB) RelativeChange InferenceTime(s) RelativeChange mAP(%) RelativeChange

SSD
FP32 46.3 0.00% 0.49 0.00% 75.65 0.00%

Direct-Int8[31]* 11.7 -75.79% 0.17 -65.31% 70.50 -6.81%
Qat-Int8** 11.7 -75.79% 0.17 -65.31% 74.70 -1.26%

YoloV3
FP32 26.4 0.00% 0.37 0.00% 76.21 0.00%

Direct-Int8[31]* 6.7 -74.62% 0.11 -70.27% 70.95 -6.92%
Qat-Int8** 6.7 -74.62% 0.11 -70.27% 75.55 -0.87%

* The slim model is quantized to Int-8 model directly without quantization-aware training.
** The slim model is quantized to Int-8 model after quantization-aware training.

Table 5: Comparative experiment of pruning

Model Method ModelSize(MB) RelativeChange mAP(%) RelativeChange

SSD

Baseline 105.2 0.00% 76.27 0.00%
Network-Slimming[8] 46.2 -56.08% 72.87 -4.46%

L1-Norm[21] 46.2 -56.08% 74.35 -2.52%
FPGM[24] 48.4 -53.99% 74.17 -2.75%

Rethinking-Pruning[35] 46.3 -55.99% 60.63 -20.51%
Our Method 46.3 -55.99% 75.18 -1.43%

YoloV3

Baseline 142.1 0.00% 78.03 0.00%
Network-Slimming[8] 26.9 -81.07% 69.85 -10.48%

L1-Norm[21] 26.2 -81.56% 73.78 -5.45%
FPGM[24] 30.9 -78.25% 73.85 -5.36%

Rethinking-Pruning[35] 26.4 -81.42% 64.89 -16.84%
Our Method 26.4 -81.42% 75.44 -3.32%

Table 6: Comparison with the original network

Model ModelSize(MB) RelativeChange InferenceTime(s) RelativeChange mAP(%) RelativeChange

SSD
Original 105.2 0.00% 1.26 0.00% 76.27 0.00%

Compressed 11.7 -88.88% 0.17 -86.51% 74.70 -2.06%

YoloV3
Original 142.1 0.00% 1.16 0.00% 78.03 0.00%

Compressed 6.7 -95.29% 0.11 -90.52% 75.55 -3.18%

4.6 Ablation Study

Comparative experiment of knowledge distilla-

tion. We compare our method with the original knowl-

edge distillation method extended by Hinton[25] and

Chen’s method[34] which considers the distillation of

regression. From TABLE 7, it can be seen that the

accuracy obtained by our method and the method ex-

tended by Hinton is higher than Chen’s method. This

shows that it is better to conduct knowledge distilla-

tion only in the classification branch. When we repro-

duced the other methods, the process of adjusting the

hyperparameters is tedious and inappropriate hyperpa-

rameters would actually reduce the mAP of the original

model. Compared with Hinton’s method, we greatly re-

duce that process on the basis of higher mAP, which is

convenient.

Comparative experiment of different com-

pression strategies. In order to show the effective-

ness of our compression pipeline, we compare different

model compression strategies. The results are shown in

TABLE 8. We ensure that the compressed network

has almost the same storage size and inference time.

From the table, we can find that the direct combination

of Network-Slimming pruning algorithm and quantiza-

tion causes a great loss of accuracy. Using our prun-

ing algorithm can greatly reduce the mAP loss caused

by pruning, and then improve the accuracy of the final

compressed model. On this basis, we further add knowl-

edge distillation algorithm between pruning and quan-

tization to obtain a lightweight model with stronger

fitting ability. The result here represents the thinking

process of our attempt to compress one-stage object

detection network and the design idea of pipeline.

5 Conclusions

In this work, we proposed a pipeline for compress-

ing the object detection network. This approach in-

cludes Pruning, Knowledge Distillation, and Quantiza-

tion. We pruned the redundant part of the original net-

work and used the mutual knowledge distillation algo-

rithm to compensate for the accuracy decrease. Then,

we performed quantization-aware training and got the
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Table 7: Comparative experiment of knowledge distillation

Model Method Regression Classification Mutual mAP(%)

SSD

Baseline 75.18
Chen[34] X X 75.44

Extend from Hinton[25] X 75.55
Our Method X X 75.65

YoloV3

Baseline 75.44
Chen[34] X X 75.67

Extend from Hinton[25] X 76.12
Our Method X X 76.21

(a) SSD

(b) YoloV3

Fig. 7: Examples of object detection at different mo-

ments in the model compression process.

Table 8: Result of different compression strategies

Model Methods mAP(%)

SSD

Baseline 76.27
Network-Slimming[8]+Quantization 71.41

L1-Norm[21]+Quantization 72.45
Our Pruning Method+Quantization 74.40

Our Compression Pipeline 74.70

YoloV3

Baseline 78.03
Network-Slimming[8]+Quantization 68.42

L1-Norm[21]+Quantization 72.76
Our Pruning Method+Quantization 75.03

Our Compression Pipeline 75.55

extremely lightweight network. In fact, these three al-

gorithms are independent of each other and we design a

pipeline to combine them together. Comparing with the

original network, the compressed network has relative-

ly few parameters and less inference time. In addition,

if the local equipment has certain competitiveness, we

can also combine the compression algorithms at will.

At present, our method is universal for one-stage ob-

ject detection networks and promotes the application of

them to real-time scenarios, such as autonomous driv-

ing, pedestrian detection, and so on.

The future research plan is to explore the optimiza-

tion of the knowledge distillation algorithm of the ob-

ject network. At present, our knowledge distillation al-

gorithm is mainly developed on the basis of classifi-

cation and does not take into account the regression

branch. If we can propose a knowledge distillation s-

trategy that optimize the regression algorithm, the s-

mall model we obtain will possess better performance.
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