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a b s t r a c t 

The efficiency of attribute reduction is one of the important challenges being faced in the 

field of Big Data processing. Although many quick attribute reduction algorithms have been 

proposed, they are tightly coupled with their corresponding indiscernibility relations, and 

it is difficult to extend specific acceleration policies to other reduction models. In this pa- 

per, we propose a generalized indiscernibility reduction model(GIRM) and a concept of the 

granular structure in GIRM, which is a quantitative measurement induced from multiple 

indiscernibility relations and which can be used to represent the computation cost of var- 

ied models. Then, we prove that our GIRM is compatible with three typical reduction mod- 

els. Based on the proposed GIRM, we present a generalized attribute reduction algorithm 

and a generalized positive region computing algorithm. We perform a quantitative analy- 

sis of the computation complexities of two algorithms using the granular structure. For the 

generalized attribute reduction, we present systematic acceleration policies that can reduce 

the computational domain and optimize the computation of the positive region. Based on 

the granular structure, we propose acceleration policies for the computation of the gen- 

eralized positive region, and we also propose fast positive region computation approaches 

for three typical reduction models. Experimental results for various datasets prove the ef- 

ficiency of our acceleration policies in those three typical reduction models. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

The processing of Big Data always suffers from the high dimensional attributes and large number of the objects. Thus, the

reduction [17,20,22,43] has become a very important preprocessing method employed to remove the redundancy on those

high dimensional attributes in Big Data applications. As reduction can decrease the computation complexity, improve the

data quality, and promote the accuracy of the classifiers, it is widely used in data mining [31,45] , machine learning [9,55] ,

and pattern recognition [14,43] . Form the perspective of the indiscernibility, reduction is an attribute subset that has the

same distinguishing capability compared with the original attribute set. According to different definitions of the distinguish-

ing relations (also denoted as indiscernibility relations), various reduction models have been proposed, such as the classical

rough set reduction model [43,61] , neighborhood rough set reduction model [13,17] , and fuzzy rough set reduction model

[1,12,32] . 
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Although reduction can greatly improve the performance of Big Data applications, the large dimension of the attributes

and the large number of objects remain a challenge that affects the efficiency of current reduction methods. Thus, fast

reduction algorithms are expected. With respect to fast reduction algorithms, they closely rely on their corresponding indis-

cernibility relations, such as the equivalence relation [34] , fuzzy relation [51] , tolerance relation [33] , similarity relation [42] ,

and neighborhood relation [17] . Therefore, the fast algorithm may only work on a specific reduction model that is deter-

mined by its indiscernibility relation. Thus, it is difficult to evaluate the overall computation cost in terms of the reduction

algorithms under varied indiscernibility relations without a unified reduction model established based on the concept of

generalized indiscernibility. Furthermore, for the acceleration polices [10,23,54,61] employed in different fast reduction al-

gorithms with respect to their corresponding indiscernibility relations, it is also difficult for them to be extended into other

reduction models without the need for a generalized model. 

In this paper, we present a generalized indiscernibility reduction model(GIRM) that addresses the above two difficulties.

We also prove that our GIRM is compatible with three typical reduction models, i.e., the equivalent relation, neighborhood

relation, and fuzzy relation based reduction models. In our GIRM, we present a concept of the granular structure, which is a

quantitative measurement induced from different indiscernibility relations. The granular structure can be used to represent

the computation cost of the generalized reduction model under all the indiscernibility relations. Based on GIRM, we present

a generalized attribute reduction algorithm as well as a generalized positive region computing algorithm. We quantitatively

analyze the generalized computation complexities of those two algorithms using the granular structure presented in GIRM.

We then present our acceleration policies for those two generalized algorithms. Specifically, we also propose fast approaches

for three typical reduction models, i.e., the classical rough set model, neighborhood rough set model, and fuzzy rough set

model, and we perform the corresponding experiments to show that our fast approaches for the three typical reduction

models are superior to state-of-the-art methods. 

2. Related works 

Generally, there are two kinds of attribute reduction approaches, i.e., indiscernibility matrix based methods 

[6,36,39,40,44,59] and attribute combination(or search policy) based methods [13,20,29,30,61] . Although the former can be

used to obtain all of the reductions, the large temporal and spatial complexity of these methods limits their implementation

in Big Data applications. The latter normally includes two key issues, the metric function and the search policy. In combi-

nation based methods, the metric function is used to evaluate whether the input attribute subset is a reduction, while the

search policy is used to generate the candidate attribute subset that will be evaluated by the metric function. There are a va-

riety of search policies, including random [26] , enumerating [35] , forward greedy [19] , and backward greedy [56] . Obviously,

the random and enumerating search policies are not suitable for Big Data owing to the high computation cost required

to find the attribute reduction. Then, greedy based search policies are dominant when dealing with Big Data. Of the two

greedy search policies, the forward greedy search policy is preferred owing to its simplicity and superior efficiency. There

are also various metric functions, such as positive region (dependency) [4] , inconsistency [29] , entropy [47] , and combina-

tion entropy [24] . Of all those metric functions, the positive region is directly induced from the concept of indiscernibility,

and it is therefore widely used in reduction algorithms with respect to various indiscernibility relations. 

In order to better apply attribute reduction in practical Big Data applications, many fast attribute reduction algorithms

[13,30,38,54] have been proposed. Usually, there are two categories of approaches to reduce the temporal complexity of the

reduction algorithms, one is to reduce the computational domain based on the monotonous theory [13,38] , while the other

is to optimize the computation of the positive region [30,54] that is closely related to the specific rough set model. From

the perspective of the evaluation, the first category is based on the property of monotonicity in that the metric function

monotonically increases with attributes. This means that the addition of a new attribute to the candidate attribute subset

will not decrease the metric function. The property of monotonicity induces if an object x belongs to the positive region

with respect to an attribute set A , then, for B ⊇ A, x belongs to the positive region with respect to B . Following this idea,

Hu et al. [13] proposed the fast forward heterogeneous attribute reduction algorithm, which is based on the neighborhood

rough set model and the fast forward discrete attribute reduction algorithm, which is based on the classical rough set model.

Similarly, Qian et al. [37,38] proposed the rank preservation principle to design attribute reduction accelerators based on the

classical rough set model and fuzzy rough set model. The principle is that the rank of attributes in the process of attribute

reduction remains unchanged after reducing the lower approximation, which can essentially ensure the monotonicity of the

metric function. From the perspective of the granulation order, the property of monotonicity can be viewed as the further

induction of the rank preservation principle. In fact, the first category of the acceleration approaches can be more common

in previous methods as most of the rough set models can satisfy the property of monotonicity. For the second category,

which optimizes the computation of the positive region, they closely depend on the specific rough set model. By employing

the sort methods, Liu et al. [27] introduced improved algorithms for the computation of the positive region based on the

classical rough set model, and Hu et al. [13] proposed an algorithm that is based on the neighborhood rough set model.

In the classical rough set model, the equivalence classes are the partitions of the universe, and Liu et al. [30] proposed a

quick algorithm based on the hash table that represents the partition, and which can reduce the computation of positive

region. In neighborhood rough model, the objects’ neighborhoods form the cover instead of the partition of the universe.

Then, Liu et al. [54] presented the notion of the hash bucket, dividing objects into a series of sequenced buckets, this enables

us to find each object’s neighborhood in its own bucket and in its adjacent buckets rather than in the whole universe. In
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the fuzzy rough model, Bhatt and Gopal [1] used the property of fuzzy approximation to simplify the computation of the

degree of objects belonging to the positive region. Although different methods are implemented in the second category,

we find that the commonality of these algorithms is that they actually optimize the computation of the granular structure,

which is presented in this paper, and can unify the different rough set models. For static datasets, besides the above two

categories of acceleration approaches, researchers have in recent years strived to design attribute reduction methods using

parallel computational models. Zhang et al. [58] proposed a parallel method for computing rough set approximations based

on the MapReduce technique. For dynamic datasets, the incremental approaches focus mainly on two perspectives, i.e., the

objects’ variation and the attributes’ variation. For example, Wang et al. [46] proposed an incremental reduction algorithm

based on information entropy with dynamically increasing attributes. Chen et al. [2] proposed an incremental method for

updating the rough set approximations when objects in the universe evolve over time. However, these methods are only

limited in rough set models based on the classical equivalence relation, and they lack a unified reduction model and unified

acceleration polices that would enable them to be extended to other rough set models. 

3. Generalized reduction model 

In this section, we present the definition of our generalized model with indiscernibility. We also discuss the relations

between our generalized model and three typical rough set models(i.e., the classical rough set model, neighborhood rough

set model, and fuzzy rough set model). 

3.1. Generalized indiscernibility reduction model 

First, we define the decision system used in our generalized indiscernibility reduction model as follows. 

A decision system DS can be denoted by 〈 U, A 〉 , where U = { x 1 , x 2 , . . . , x n } is a nonempty and finite set of objects, called

the universe, A = C ∪ D is a finite set of attributes to characterize the objects, C = { a 1 , a 2 , . . . , a m 

} is the condition attribute

set, and D is the decision attribute set. 

Indiscernibility reflects the distinguishing possibility among objects with the available information, which is always rep-

resented by the relation R defined on U . In the classical rough set, R is simplified to an equivalence relation, which needs to

satisfy all of the reflexive, symmetric, and transitive properties. However, the equivalence relation may be too strict to lead

to low effects in real cases. To address this problem in practical applications, many extensions [3,7,25,41,42,52,53] of the

classical equivalence relation were developed. For example, Hu et al. [13] extended the equivalence relation to the neigh-

borhood relation, which can achieve much better performance in feature selection. Among the classical equivalence relation

and its extensions, all of them have the common essential–indiscernibility, which is the degree of the distinguishing rela-

tions among objects in the decision system. Then, indiscernibility is the most important concept in the classical rough set

and its extensions. Below, we present a formal definition of the indiscernibility used in our GIRM. 

Definition 1. Generalized indiscernibility relation in GIRM. Given a decision system DS = 〈 U, C ∪ D 〉 and B ⊆ C, R B ⊆ U × U is

a relation defined on U with respect to the attribute set B , for ∀ x, y ∈ U, R B is characterized by a membership function μR B
that is associated with each pair ( x, y ), and μR B 

(x, y ) represents the strength of the relation between x and y , μR B 
∈ [0 , 1] . If

the relation R B satisfies reflexivity: ∀ x ∈ U, μR B 
(x, x ) = 1 , R B is a generalized indiscernibility relation. 

The generalized indiscernibility relation uses the weak restrain in terms of reflexivity, symmetry, and transitivity. The

symmetry and transitivity can be relaxed, while the reflexivity cannot be relaxed because it is a minimal requirement for

discernibility. 

Definition 2. Granular structure in GIRM. In a decision system DS = 〈 U, C ∪ D 〉 , U = { x 1 , x 2 , . . . , x n } , B ⊆C, R B is a g eneralized

indiscernibility relation. ∀ x i , x j ∈ U , the granular structure GS R B determined by R B is defined as 

GS R B = 

{
I G 

R B 
x i 

| I G 

R B 
x i 

= 

μR B (x i , x 1 ) 

x 1 
+ 

μR B (x i , x 2 ) 

x 2 
+ . . . + 

μR B (x i , x n ) 

x n 
, i = 1 , 2 , . . . , n 

}

IG 

R B 
x i 

is an information granule of x i , the degree of x j belonging to the information granule IG 

R B 
x i 

is denoted by μ
IG 

R B 
x i 

(x j ) and

μ
IG 

R B 
x i 

(x j ) = μR B 
(x i , x j ) . If μR B 

(x i , x j ) ∈ { 0 , 1 } , IG 

R B 
x i 

can be written as 
{

x j | x j ∈ U ∧ μR B 
(x i , x j ) = 1 

}
. 

In the above definition, “+” means the union of elements, and information granules are induced by the granulation

strategies that are based on indiscernibility relations. The diversity of indiscernibility relations leads to the diversity of

information granules. We illustrate it using an example. 

Example 1. Table 1 is a decision system, U = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 } , C = { a, b, c } , D = { d } . Let B = { c } , R B be the indiscerni-

bility relation on U , and 

μR B 
(x i , x j ) = 

{
1 , c(x i ) = c(x j ) 

0 , c(x i ) � = c(x j ) 
. 
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Table 1 

Decision system for the 

example. 

a b c d 

x 1 1 1 1 0 

x 2 1 2 3 2 

x 3 2 3 2 0 

x 4 3 1 2 1 

x 5 1 1 1 1 

x 6 1 2 3 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R 
′ 
B 

is another indiscernibility relation, and μ
R 
′ 
B 

(x i , x j ) = 1 − | c(x i ) − c(x j ) | 
c max − c min 

. Although both R B and R 
′ 
B 

are indiscernibility

relations in GIRM, the information granules that are induced by them are different, e.g., IG 

R B 
x 1 

= 

1 

x 1 
+ 

0 

x 2 
+ 

0 

x 3 
+ 

0 

x 4 
+ 

1 

x 5 
+

0 

x 6 
, IG 

R 
′ 
B 

x 1 
= 

1 

x 1 
+ 

0 

x 2 
+ 

0 . 5 

x 3 
+ 

0 . 5 

x 4 
+ 

1 

x 5 
+ 

0 

x 6 
. As IG 

R B 
x 1 

is induced by a precise indiscernibility relation, it can be denoted by

IG 

R B 
x 1 

= { x 1 , x 5 } . 
The information granules in GIRM are more generalized than equivalence classes in the classical rough set, and they can

form a concept family to approximate the arbitrary subset of objects. Below, we give the corresponding definitions of the

lower approximation and upper approximation in GIRM. 

Definition 3. Lower approximation and upper approximation in GIRM. R B is a generalized indiscernibility relation on the

universe U . For any X ⊆U , the lower and upper approximations of X are defined as follows: 

apr 
R B 

X = 

{
(x, μapr 

R B 
X (x )) ∈ U × [0 , 1] | μapr 

R B 
X (x ) = inf 

y / ∈ X∧ y ∈ U 

{ 

1 − μ
IG 

R B 
x 

(y ) 
} 

}

apr R B X = 

{
(x, μapr R B 

X (x )) ∈ U × [0 , 1] | μapr R B 
X (x ) = sup 

y ∈ X 

{ 

μ
IG 

R B 
x 

(y ) 
} 

}

μapr 
R B 

X (x ) is the membership degree of x with respect to the lower approximation, and μapr R B 
X (x ) is the membership

degree of x with respect to the upper approximation. As μ
IG 

R B 
x 

(y ) = μR B 
(x, y ) , μ

IG 
R B 
x 

(y ) can be replaced by μR B 
(x, y ) in

Definition 3 . Assuming that an ultrametric distance can be computed as 1 − μR B 
(x, y ) , then μapr 

R B 
X (x ) can be regarded as

the ultrametric distance from x to the closest object that is not in X , μapr R B 
X (x ) is determined by the similarity degree

between x and the closest object that is in X . 

Example 2. In Table 1 , the objects are divided into three subsets with the decision attribute d : X 1 =
{ x 1 , x 3 } , X 2 = { x 4 , x 5 } , X 3 = { x 2 , x 6 } . For object x 1 and indiscernibility relation R 

′ 
B 

in example 1, we calculate its

membership degrees with respect to the lower approximation and upper approximation of each subset as fol-

lows: μapr 
R 
′ 
B 

X 1 
(x 1 ) = inf { 1 , 0 . 5 , 0 , 1 } = 0 , μapr 

R 
′ 
B 

X 2 
(x 1 ) = inf { 0 , 1 , 0 . 5 , 1 } = 0 , μapr 

R 
′ 
B 

X 3 
(x 1 ) = inf { 0 , 0 . 5 , 0 . 5 , 0 } = 0 ,

μapr 
R 
′ 
B 

X 1 
(x 1 ) = sup { 1 , 0 . 5 } = 1 , μapr 

R 
′ 
B 

X 2 
(x 1 ) = sup { 0 . 5 , 1 } = 1 , μapr 

R 
′ 
B 

X 3 
(x 1 ) = sup { 0 , 0 } = 0 . 

Generally, the decision attribute set D induces crisp classification, denoted by U / D . In this paper, we focus only on this

kind of decision system. Then, we define the decision positive region as follows. 

Definition 4. Decision positive region in GIRM. Given a decision system DS = 〈 U, C ∪ D 〉 and B ⊆C , the positive region of D

with respect to B in GIRM is P OS # 
B 
(D ) = 

{ ⋃ 

x ∈ U (x, μ
POS # 

B 
(D ) (x )) 

} 

, μ
POS # 

B 
(D ) (x ) is the membership degree of an object with

respect to the positive region that is defined by 

μPOS # 
B 
(D ) (x ) = sup 

X∈ U/D 

μapr 
R B 

X (x ) . 

Theorem 1. Given a decision system DS = 〈 U, C ∪ D 〉 and B ⊆C, R B is the generalized indiscernibility relation, and objects are

divided into crisp subsets { D 1 , D 2 , . . . D l } with the decision attribute D. If x �∈ D k , then μapr 
R B 

D k 
(x ) = 0 . 

Proof. Based on Definition 1 , μR B 
(x, x ) = 1 . For x �∈ D k , from Definition 3 , it follows that 

μapr 
R B 

D k (x ) = inf 
y / ∈ D k 

{ 

1 − μ
IG 

R B 
x 

(y ) 
} 

, y ∈ U 

= inf 
y / ∈ D k 

{ 1 − μR B (x, y ) } , y ∈ U 

= inf 
y / ∈ D k 

{ 1 − μR B (x, x ) , 1 − μR B (x, y ) } , y ∈ U ∧ y � = x 
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= inf 
y / ∈ D k 

{ 1 − μR B (x, x ) , 1 − μR B (x, y ) } , y ∈ U ∧ y � = x 

= inf 
y / ∈ D k 

{ 0 , 1 − μR B (x, y ) } , y ∈ U ∧ y � = x 

= 0 . 

�

The theorem indicates that the membership degree of x with respect to the decision positive region is closely deter-

mined by the membership degree of x with respect to the decision class to which x belongs. Therefore, μ
POS # 

B 
(D ) (x ) =

μapr 
R B 

D i 
(x ) , x ∈ D i . 

Another important issue in GIRM is the dependency. Based on the above theorem, the dependency function can be

defined as follows. 

Definition 5. Dependency function in GIRM. The dependency function of D with respect to B is defined as 

DF (B | D ) = 

∑ 

x ∈ U μPOS # 
B 
(D ) (x ) 

| U | . 

Example 3. In Table 1 , let B = { c } , D = { d } . Considering the indiscernibility relation R 
′ 
B in example 1, μ

POS # 
B 
(D ) (x ) =

μapr 
R 
′ 
B 

D i 
(x ) , x ∈ D i . Hence, μ

POS # 
B 
(D ) (x 1 ) = 0 , μ

POS # 
B 
(D ) (x 2 ) = 0 . 5 , μ

POS # 
B 
(D ) (x 3 ) = 0 , μ

POS # 
B 
(D ) (x 4 ) = 0 , μ

POS # 
B 
(D ) (x 5 ) = 0 ,

μ
POS # 

B 
(D ) (x 6 ) = 0 . 5 . Then, the dependency degree of D with respect to B is DF (B | D ) = 

0 + 0 . 5 + 0 + 0 + 0 + 0 . 5 

6 
= 0 . 17 . 

The dependency function reflects the distinguishing capability of condition attributes. As 0 � μ
POS # 

B 
(D ) (x ) � 1 , we have 0

≤ DF ( B | D ) ≤ 1. Based on the essential idea of indiscernibility, the goal of the attribute reduction is to find a minimal attribute

set that has the same distinguishing capability as all of condition attributes. Then the reduction model with generalized

indiscernibility can be formally defined as follows. 

Definition 6. Generalized reduction model. Given a decision system DS = 〈 U, C ∪ D 〉 and B ⊆C , ∀ a ∈ B, B is the reduction if

the following conditions are satisfied, 

1. DF (B | D ) = DF (C| D ) ; 

2. DF (B − a | D ) < DF (C| D ) . 

The first condition guarantees that the reduction has the same distinguishing capability as the whole condition attribute

set, and the second condition guarantees that there is no redundant attribute in the reduction. 

3.2. Unifying three typical rough set models with GIRM 

Below, we employ three typical rough set models, i.e., the classical rough set, neighborhood rough set and fuzzy rough

set, and we discuss their relation to our proposed GIRM. The discussion shows that these three typical rough set models

can be incorporated into our GIRM. 

3.2.1. Classical rough set model 

Before discussing the relationship between the classical rough set [34] and our GIRM, we discuss several basic concepts

regarding the classical rough set as follows [34] . 

Definition 7. Given a decision system DS = 〈 U, C ∪ D 〉 , for an attribute subset B ⊆A , the indiscernibility relation in the classi-

cal rough set is defined by I B : 

I B = { (x, y ) ∈ U × U | ∀ a ∈ B, a (x ) = a (y ) } . 
Obviously, I B is an equivalence relation. The family of all equivalence classes of I B can be denoted by U / I B , or simply U / B .

Theorem 2. Given a decision system DS = 〈 U, C ∪ D 〉 and B ⊆C, I B is the indiscernibility relation in the classical rough set, and

R B is the generalized indiscernibility relation in GIRM. If R B can be degenerated to I B , then R B should satisfy the following three

necessary but insufficient conditions. 

C 1 : ∀ x, y ∈ U , μR B 
(x, y ) = μR B 

(y, x ) , 

C 2 : μR B 
∈ { 0 , 1 } , 

C 3 : ∀ x, y, z ∈ U , min (μR B 
(x, y ) , μR B 

(y, z)) � μR B 
(x, z) . 

Proof. From Definition 7 , we obtain, 

1. ∀ x, y ∈ U , if ( x, y ) ∈ I B , then ( y, x ) ∈ I B ; if ( x, y ) �∈ I B , then ( y, x ) �∈ I B , so μI B 
(x, y ) = μI B 

(y, x ) ; 

2. an arbitrary pair( x, y ) ∈ U × U , if ( x, y ) ∈ I B , then μI B 
(x, y ) = 1 ; otherwise, μI B 

(x, y ) = 0 ; 

3. ∀ x, y, z ∈ U , if ( x, y ) ∈ I B and ( y, z ) ∈ I B , then( x, z ) ∈ I B ; otherwise, ( x, z ) �∈ I B . Therefore, μI B 
(x, z) =

min (μI B 
(x, y ) , μI B 

(y, z)) . 
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Thus, C 1, C 2, C 3 are the necessary properties of I B . If R B can be degenerated to I B , R B needs to satisfy C 1, C 2, C 3. �

In the classical rough set, X ⊆U can be approximated by the information granule [ x ] I B , [ x ] I B = { y | xI B y, y ∈ U } , which is also

an equivalence class of I B . There are two approximations, i.e., the lower approximation I B X and the upper approximation

I B X: 

I B X = { [ x ] I B | [ x ] I B ⊆ X } 
I B X = { [ x ] I B | [ x ] I B ∩ X � = ∅ } . 

Then, the positive region of the decision is defined as: 

P OS I B (D ) = 

⋃ 

X⊆U/D 

I B X. 

The dependency function is: 

γI B (D ) = 

| P OS I B (D ) | 
| U | . 

Theorem 3. Given a decision system DS = 〈 U, C ∪ D 〉 and B ⊆ C, I B is the indiscernibility relation in the classical rough set. Then,

DF (B | D ) = 

∣∣P OS I B (D ) 
∣∣

| U | . 

Proof. Let U/D = { D 1 , D 2 , . . . , D l } . For ∀ x i ∈ U , ∣∣P OS I B (D ) 
∣∣ ⇔ μPOS I B 

(D ) (x i ) = 

{
1 , x i ∈ P OS I B (D ) 

0 , x i / ∈ P OS I B (D ) 

⇔ μPOS I B 
(D ) (x i ) = 

{
1 , ∃ D k , [ x i ] I B ⊆ D k , k = 1 , 2 , . . . , l 

0 , ∀ D k , [ x i ] I B � D k , k = 1 , 2 , . . . l. 

In GIRM, according to Definition 7 , the membership function of I B is μI B 
(x i , x j ) = 

{
1 , (x i , x j ) ∈ I B 
0 , (x i , x j ) / ∈ I B , 

If ∃ D k , [ x i ] I B ⊆ D k , then ∀ x j �∈ D k , ( x i , x j ) �∈ I B ⇒ μI B 
(x i , x j ) = 0 ⇒ 

μapr 
I B 

D k (x i ) = inf x j / ∈ D k 
{

1 − μI B 

(
x i , x j 

)}
= 1 ⇒ μ

POS # 
B 
(D ) (x i ) = 1 . 

If ∀ D k , [ x i ] I B � D k , assuming x i ∈ D t , then ∃ x j �∈ D t , ( x i , x j ) ∈ I B ⇒ μI B 
(x i , x j ) = 1 and μapr 

I B 
D k (x i ) =

inf x r / ∈ D k 
{

1 − μI B 

(
x i , x j 

)
, 1 − μI B ( x i , x r ) 

}
= 0 ⇒ μ

POS # 
B 
(D ) (x i ) = 0 . 

Thus, DF (B | D ) = 

∑ 

x ∈ U μPOS # 
B 
(D ) (x ) 

| U | = 

∣∣P OS I B (D ) 
∣∣

| U | . �

Example 4. In Table 1 , let B = { c } and D = { d } , then U/B = { { x 1 , x 5 } , { x 3 , x 4 }, { x 2 , x 6 }.}, U/D = { { x 1 , x 3 } , { x 2 , x 6 } , { x 4 , x 5 } } ,
thus, P OS I B (D ) = { x 2 , x 6 } , γI B 

(D ) = 1 / 3 . I B is also the indiscernibility relation R B in example 1. Considering R B in GIRM,

μ
POS # 

B 
(D ) (x 1 ) = 0 , μ

POS # 
B 
(D ) (x 2 ) = 1 , μ

POS # 
B 
(D ) (x 3 ) = 0 , μ

POS # 
B 
(D ) (x 4 ) = 0 , μ

POS # 
B 
(D ) (x 5 ) = 0 , μ

POS # 
B 
(D ) (x 6 ) = 1 , thus, DF (B | D ) =∑ 

x ∈ U μPOS # 
B 
(D ) (x ) 

| U | = 1 / 3 . 

3.2.2. Neighborhood rough set model 

As the extension of classical rough set, the neighborhood relation based model [13] can process both numeric and dis-

crete attributes. Since the neighborhood rough set model in paper [13] is representative and practical, we will discuss the

relation between the neighborhood rough set [13] and our GIRM in this section. Several basic concepts in the neighborhood

rough set are given firstly. 

Definition 8. Given a decision system DS = 〈 U, C ∪ D 〉 , U = { x 1 , x 2 , . . . , x n } , B ⊆ C and ε ≥ 0, the neighborhood εB ( x i ) of x i 
with respect to B is defined as ε B (x i ) = 

{
x j | x j ∈ U, f B (x i , x j ) � ε 

}
, where f B ( x i , x j ) is a metric function that satisfies: for ∀ x i ,

x j , x k ∈ U , 

(1) f B ( x i , x j ) ≥ 0, if x i = x j , f B (x i , x j ) = 0 ; 

(2) f B (x i , x j ) = f B (x j , x i ) ; 

(3) f B (x i , x j ) � f B (x i , x k ) + f B (x k , x j ) . 

εB ( x i ) is the neighborhood information granule, and the family of neighborhood granules forms the neighborhood gran-

ular structure, which covers the universe. A neighborhood relation N B on U with respect to B can be presented as a relation

matrix M(N B ) = (r i j ) n ×n where 

r i j = 

{
1 , x j ∈ ε B (x i ) 

0 , otherwise 
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The neighborhood relation satisfies reflexivity and symmetry, and it draws the objects together in terms of distances 1 . If

ε = 0 , εB ( x ) is an equivalence class and N B is an equivalence relation. 

Theorem 4. Given a decision system DS = 〈 U, C ∪ D 〉 and B ⊆C, N B is the neighborhood relation on U, and R B is the generalized

indiscernibility relation in GIRM. If R B can be degenerated to N B , then R B should satisfy the following two necessary but insufficient

conditions: 

C 1 : ∀ x, y , ∈ U , μR B 
(x, y ) = μR B 

(y, x ) , 

C 2 : μR B 
∈ { 0 , 1 } . 

Proof. Similar to Theorem 1 , it can be easily proven. �

Definition 9. Given a neighborhood decision system 〈 U, C ∪ D , ε〉 , X ⊆U, B ⊆C , the lower and upper approximations of X in

terms of N B , are defined as [13] : 

N B X = { x i | ε B (x i ) ⊆ X, x i ∈ U } 
N B X = { x i | ε B (x i ) ∩ X � = ∅ , x i ∈ U } 

Definition 10. Given a neighborhood decision system 〈 U, C ∪ D , ε〉 , D 1 , D 2 , . . . , D n are the object subsets with decisions 1 to

n . For B ⊆C , the lower and upper approximations of decision D with respect to attributes B are defined as [13] : 

N B D = 

n ⋃ 

i =1 

N B D i 

N B D = 

n ⋃ 

i =1 

N B D i 

The lower approximation of the decision is defined as the union of the lower approximation of each decision class. It is

also called the positive region of the decision, and is denoted by P OS N B D . Then, the dependency degree of D with respect to

B in the neighborhood rough set model can be calculated as: 

γN B (D ) = 

| P OS N B (D ) | 
| U | 

Theorem 5. Given a neighborhood decision system 〈 U, C ∪ D , ε〉 and B ⊆C, N B is the neighborhood relation, then DF (B | D ) =∣∣P OS N B (D ) 
∣∣

| U | . 

Proof. Similar to Theorem 3 , it can be easily proven. �

3.2.3. Fuzzy rough set model 

The concept of the fuzzy rough set was first proposed by Dubois and Prade [8] , who constructed a pair of lower and

upper approximation operators for fuzzy sets based on a fuzzy similarity relation. To generally apply the fuzzy rough set

method, many extended versions [28,50,60] and relative applications [12,16,44,48] have been developed. In particular, to

process hybrid data, Hu et al. [12] proposed a novel fuzzy rough set model with crisp lower and upper approximations,

while Wang et al. [48] developed a generalized fuzzy rough set model using β-cut to define its lower and upper approx-

imations. Liang et al. [49] discussed the relationships between the above three models. Hu’s lower approximation is the

1-cut of Dubois’s fuzzy lower approximation, and Hu’s upper approximation is the strong 0-cut of Dubois’s fuzzy upper ap-

proximation. Wang’s fuzzy rough approximations are essentially equal to the β-cut of Dubois’s fuzzy rough approximations.

Without loss of generality, we select Dubois’s fuzzy rough set model [8] as a representative in the following discussion. First,

we introduce the central concept of the fuzzy similarity relation [57] as follows. 

Definition 11. Let U be a nonempty universe. For ∀ x, y ∈ U, μS ( x, y ) is the strength of fuzzy binary relation S between x

and y . Then, a fuzzy binary relation S on U is called a fuzzy similarity relation if S satisfies [57] for ∀ x, y, z ∈ U , 

(1) reflexivity: μS ( x, x ) = 1 ; 

(2) symmetry: μS ( x, y ) = μS ( y, x ) ; 

(3) transitivity: μS ( x, z ) ≥ ∨ y ( μS ( x, y ) ∧ μS ( y, z )). 

In a decision system 〈 U, C ∪ D 〉 , for every attribute a ∈ A , we can employ a fuzzy similarity relation S a to measure the

degree of similarity between each pair of objects with respect to a . For an attribute subset B ⊆C , the fuzzy similarity relation

induced by B is S B = 

⋂ 

a ∈ B { S a } . 
Theorem 6. Given a decision system 〈 U, C ∪ D 〉 , B ⊆C and S B is the fuzzy similarity relation, and R B is the generalized indis-

cernibility relation in GIRM. If R B can be degenerated to S B , then R B should satisfy the following two necessary but insufficient
conditions: 

1 In this paper, we only discuss the metric function of Euclidean distance used in neighborhood rough set theory. 
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C 1 : ∀ x, y ∈ U , μR B 
(x, y ) = μR B 

(y, x ) , 

C 3 : ∀ x, y, z ∈ U , min (μR B 
(x, y ) , μR B 

(y, z)) � μR B 
(x, z) . 

Proof. Based on Definitions 1 and 11 , it can be easily proven. �

According to the definition in [8] , for X ⊆U , the memberships of an object x with respect to the fuzzy lower and upper

approximations of X are described as: 

μS B X (x ) = inf y ∈ U max { 1 − μS B ( x, y ) , X ( y ) } 
μS B X 

(x ) = sup y ∈ U min { μS B ( x, y ) , X ( y ) } . 
It is easy to prove that μS B X 

(x ) and μ
S B X 

(x ) are equal to μapr R B 
X (x ) and μapr R B 

X (x ) in GIRM, respectively. Based on the

above definitions, the dependency function in the fuzzy rough set model can be calculated in the same way as in GIRM. 

4. General quick reduction algorithms based on GIRM 

There are various attribute reduction approaches in terms of rough set models, and many quick reduction algorithms have

been also proposed. However these quick approaches may only work on specific indiscernibility relations. In this section,

we will provide a series of systematic acceleration policies for the attribute reduction from the viewpoint of GIRM. Based

on the generalized indiscernibility relation, we first present a basic generalized quick attribute reduction algorithm, and we

then proposed a fast approach based on the monotonicity of the lower approximation in GIRM. In the reduction algorithms,

we find that the largest computation cost of the attribute reduction is associated with computing the positive region, while

the computation of the positive region is closely related to the indiscernibility relation. Based on the concept of the granular

structure in our GIRM, the computation of the positive region can be regarded as involving the construction and iteration

of the granular structure decoupled with the indiscernibility relation. Then, we further present a generalized positive region

computing algorithm based on the granular structure in GIRM. Along the idea of computing the positive region with the

granular structure, we also propose three fast positive region computing algorithms by accelerating the construction of the

granular structures corresponding to those three typical rough set models, i.e., the classical rough set model, neighborhood

rough set model and fuzzy rough set model. 

4.1. Generalized quick reduction algorithm for GIRM 

In attribute reduction algorithms [1,15,30,37] , the dependency function is the most popular measure employed to repre-

sent the discernibility capability of attributes. Moreover, most quick attribute reduction algorithms are designed using the

attribute significance based on the dependency function. In our GIRM, the significance of the attribute can be defined as

follows. 

Definition 12. The significance of an attribute in GIRM. Given a decision system DS = 〈 U, C ∪ D 〉 and B ⊆C , for ∀ a ∈ C − B, the

significance of an attribute a is 

Sig(a, B, D ) = DF (B ∪ a | D ) − DF (B | D ) . 

Based on Definition 12 , we can propose a generalized attribute reduction algorithm in GIRM with a forward greedy

search policy as follows. 

In the loop of step 2, it needs to compute the significance of the attribute, which is equal to the change of the decision

positive region. With respect to the computational complexity of Algorithm 1 , we assume that there are k attributes included

in the reduction and the temporal complexity involved in computing the positive region on U is denoted as Pos (| U |), then the
Algorithm 1 Generalized forward greedy attribute reduction algorithm. 

Input: 〈 U, C ∪ D 〉 ; 
Output: Reduction B . 

step 1. B ← φ; 

step 2. for each a i ∈ C − B 

{ compute Sig ( a i , B, D ) } ;
step 3. select the attribute a k satisfying Sig ( a k , B, D ) = max (Sig ( a i , B, D ) ) ; 

step 4. if Sig ( a k , B, D ) > 0 

B ← B ∪ a k , go to step 2; 

else 

return B ; 

step 5. return reduction B . 
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total computational time is | C| × Pos (| U| ) + (| C| − 1) × Pos (| U| ) + . . . + (| C| − k ) × P os (| U| )= P os (| U| ) × ∑ k 
i =0 (| C| − i ) . There-

fore, the temporal complexity of the attribute reduction algorithm depends mainly on the computation cost of the positive

region. With respect to the computation of the Pos (| U |), two strategies are employed to reduce the temporal complexity, the

direct strategy involves reducing the computational domain of U , and the other one involves optimizing the computation of

the positive region. 

Based on the idea of the first strategy, we present a generalized quick forward greedy attribute reduction algorithm.

Before presenting the fast algorithm, we first present the monotonicity theorem and its corollary in GIRM. 

Theorem 7. Given a decision system 〈 U, C ∪ D 〉 , B 1 ⊆B 2 ⊆C , R B 1 and R B 2 are generalized indiscernibility relations on U in GIRM.

If R B 2 ⊆ R B 1 , then μ
POS # 

B 1 
(D ) (x ) � μ

POS # 
B 2 

(D ) (x ) for x ∈ U. 

Proof. If R B 2 ⊆ R B 1 , then ∀ x, y ∈ U . μR B 2 
(x, y ) � μR B 1 

(x, y ) . For an object x , assuming x belongs to the decision class D i , we

have inf y ∈ U−D i 

{ 

1 − μR B 2 
(x, y ) 

} 

≥ inf y ∈ U−D i 

{ 

1 − μR B 1 
(x, y ) 

} 

. That is, μ
POS # 

B 1 
(D ) (x ) ≤ μ

POS # 
B 2 

(D ) (x ) . �

The essence of Theorem 7 is the monotonicity of the decision positive region with respect to the attributes. In prac-

tical applications, this is very important in the heuristic attribute reduction method because it ensures that the depen-

dency function will increase monotonously as the attributes increase. Based on Theorem 7 , for an arbitrary object x ∈ U , if

μ
POS # 

B 1 
(D ) (x ) = 1 , then μ

POS # 
B 2 

(D ) (x ) = 1 . Therefore, we have the following corollary. 

Corollary 1. Given a decision system DS = 〈 U, C ∪ D 〉 , B 1 ⊆B 2 ⊆C , R B 1 and R B 2 are generalized indiscernibility relations on U in

GIRM. If R B 2 ⊆ R B 1 , let U 

′ = 

{
x | μ

POS # 
B 1 

(D ) (x ) = 1 , x ∈ U 

}
, then 

∑ | U| 
i =1 

μ
POS # 

B 2 
(D ) (x i )= 

∑ | U |−| U ′ | 
j=1 

μ
POS # 

B 1 
(D ) (x j ) + | U 

′ | for x i ∈ U and

x j ∈ U − U 

′ 
. 

Proof. This can be easily proven from Theorem 7 . �

Theorem 7 shows that the degree of an object necessary belonging to the decision positive region increases with the

addition of attributes. Corollary 1 shows that once the membership degree of an object with respect to the decision positive

region reached one, it will not change regardless of the subsequent addition of attributes. Then, for such objects, we do

not need to compute their membership degrees with respect to the decision positive region when adding new attributes

into the existing attribute subset. Thus, the generalized quick forward greedy attribute reduction algorithm is presented as

follows. 

In Algorithm 2 , the domain U in each iteration to compute the positive region is gradually reduced. This will significantly

improve the computational efficiency. Assuming that it will reduce | U |/ k objects in U when adding an attribute into the can-

didate attribute set, then the computational time of Algorithm 2 can be calculated as | C| × Pos (| U| ) + (| C| − 1) × Pos (| U| ×
k −1 

k 
)+ . . . + (| C| − k ) × Pos (| U| × 1 

k 
) , which is lower than that of Algorithm 1 . Considering the second strategy to optimize

the computation of the positive region, we present a generalized algorithm to compute the positive region based on the

granular structure in GIRM, which is decomposed into two steps, i.e., constructing the granular structure and iterating the

granular structure. 
Algorithm 2 Generalized quick forward greedy attribute reduction algorithm. 

Input: 〈 U, C ∪ D 〉 ; 
Output: Reduction B . 

step 1. B ← φ; 

tep 2. for each a i ∈ C − B 

{ compute P OS # 
B ∪ a i (D ) on U , 

put the objects satisfying μ
POS # 

B ∪ a i 
(D ) (x ) = 1 into U 

′ 
a i 

, x ∈ U , 

compute Sig ( a i , B, D ) } ;
tep 3. select the attribute a k satisfying Sig ( a k , B, D ) = max (Sig ( a i , B, D ) ) ; 

tep 4. U ← U − U 

′ 
a k 

; 

tep 5. if Sig ( a k , B, D ) > 0 

B ← B ∪ a k , go to step 2; 

else 

return B ; 

tep 6. return reduction B . 
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Theorem 8. Given a decision system DS = 〈 U, C ∪ D 〉 and B ⊆C, R B is the generalized discernibility relation in GIRM, and GS R B is

the granular structure induced by R B . If the time complexity to compute GS R B is represented by function T (GS R B ) , then the time

complexity to compute P OS # 
B 
(D ) is O (T (GS R B ) + 

∑ | IG 

R B 
x i 

| ) . 
Proof. From Theorem 1 , we know that μ

POS # 
B 
(D ) (x i ) = μapr 

R B 
D k 

(x i ) where x i ∈ D k . In GIRM, computing μapr 
R B 

D k 
(x i ) is based

on IG 

R B 
x i 

, and GS R B is constructed using IG 

R B 
x i 

for ∀ x i ∈ U . That is, the decision positive region is hidden in the granular

structure. Then there are two steps to compute the decision positive region, which is equal to computing each object’s

degree belonging to the decision positive region. The first step is to find the granular structure, and the second step

is to iterate each information granule in the granular structure. Therefore, the time complexity to compute P OS # 
B 
(D ) is

O (T (GS R B ) + 

∑ | IG 

R B 
x i 

| ) . �

Based on Theorem 8 , there are two approaches to accelerating the positive region algorithm, namely optimizing the

construction of the granular structure and the iteration of the granular structure. Below, we will present fast positive region

computing algorithms from the above two perspectives with respect to three typical rough set models. 

4.2. Fast positive region computing algorithm for classical rough set model 

In the classical rough set, many fast approaches [10,27] have been proposed to compute the positive region in terms

of the equivalence relation. After further analyzing those fast approaches, they all try to introduce sorting methods to the

preprocessing of objects in order to accelerate the computation of the granular structures. In our previous work [30] , we

showed that the hash table can accurately represent the granular structure induced by the equivalence relation. Then, fol-

lowing the idea of Algorithm 3 , we can present a fast positive region computing algorithm for the classical rough set model

based on the hash table. 

B ( x j ) is the numerical encoding of the object x j with respect to the attribute subset B , and hash ( B ( x j )) is the hash function

that maps the object’s numerical encoding into the hash item. All of the objects with the same encoding will be mapped

into the same hash item. Based on Theorem 8 , the temporal complexity of computing the positive region is composed of two

components. With regard to the temporal complexity of constructing the granular structure in Algorithm 4 , the hash table

constructed by step 2 is the natural granular structure induced by the equivalence relation, thus, Algorithm 4 only needs

to iterate | U | times to construct the granular structure, and the temporal complexity of constructing the granular structure

is O (| U |). With respect to the temporal complexity of iterating the granular structure, the granular structure induced by
Algorithm 3 Generalized algorithm to compute positive region. 

Input: 〈 U, C ∪ D 〉 , B ⊆ C; 

Output: P OS # B (D ) . 

step 1. GS R B ← φ; 

step 2. for each x i ∈ U // Constructing the granular structure 

{ compute IG 

R B 
x i 

, which is the information granule of x i , 

GS R B ← GS R B ∪ IG 

R B 
x i 

} ; 
step 3. for each IG 

R B 
x i 

∈ GS R B // Iterating the granular structure 

{ compute μapr 
R B 

D k 
(x i ) where x i ∈ D k } ; 

step 4. return P OS # B (D ) . 

Algorithm 4 Fast positive region computing algorithm for classical rough model. 

Input: 〈 U, C ∪ D 〉 , B ⊆ C; 

Output: GS I B and | P OS I B (D ) | . 
step 1. GS I B ← φ, Count = 0 , IG 

I B 
x i 

. f lag = true , IG 

I B 
x i 

.count = 0 ;// GS I B is the hash table induced by I B , IG 

I B 
x i 

is the hash item 

step 2. for each x j ∈ U // Constructing the granular structure induced by the equivalence relation { 

I G 

I B 
x i 

← I G 

I B 
x i 

∪ hash (B (x j )) , 

I G 

I B 
x i 

.count = I G 

I B 
x i 

.count + 1 , 

if the decision of IG 

I B 
x i 

is inconsistent, then IG 

I B 
x i 

. f l ag = fal se } ; 
step 3. for each IG 

I B 
x i 

∈ GS I B // Iterating the granular structure induced by the equivalence relation 

{ C ount = C ount + IG 

I B 
x i 

.count , where IG 

I B 
x i 

. f lag == true } ; 
step 4. return GS I B and C ount .// C ount is | P OS I B (D ) | 
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Fig. 1. The hash table induced by condition attribute set C . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the equivalence relation is a crisp partition on U , thus 
∑ | IG 

I B 
x i 
| = | U| , and the temporal complexity of iterating the granular

structure is O (| U |). In fact, the computation time required to iterate the granular structure can be further reduced. The

positive region is related only to the information granule that all the objects in that information granule are consistent. Then

we use IG 

I B 
x i 

. f lag to represent the consistency of the information granule, and step 3 only needs to process the information

granules with IG 

I B 
x i 

. f lag = true . Therefore the practical times required to iterate the granular structure will be much less than

| U |. 

Here, we will use an example to provide detailed illustrative process of Algorithm 4 . 

Example 5. In Table 1 , C = { a, b, c } , and we then obtain the numerical encoding of each object with C as follows: C(x 1 ) =
111 , C(x 2 ) = 123 , C(x 3 ) = 232 , C(x 4 ) = 311 , C(x 5 ) = 111 , C(x 6 ) = 123 . After all of the objects have been mapped into hash

items according to the hash function(step 2), the hash table is as shown in Fig. 1 , which is also the granular structure

GS I C . During the process of constructing the hash table, the number of objects in each information granule can be counted,

and the consistency of the information granule can be checked. Then, by iterating the hash table(step 3) with the aid of

IG 

I C 
x i 

.count and IG 

I C 
x i 

. f lag, we have P OS I C (D ) = { { x 2 , x 6 } , { x 3 } , { x 4 } } and | P OS I C (D ) | = 4 . 

4.3. Fast positive region computing algorithm for neighborhood rough set model 

In the neighborhood rough set [17] , objects in the same neighborhood information granule are drawn together by the

Euclidean distance. As the neighborhood relation can not satisfy the C 3(transitivity), the neighborhood granular structure

is a cover, but not a partition, on the universe. Thus, the neighborhood granular structure cannot be constructed by the

hash function in Algorithm 4 . Generally, it needs to iterate all objects in U in order to obtain the neighborhood information

granule of each object, and the computation cost required to obtain the neighborhood granular structure will thus approxi-

mate to O (| U | 2 ). Using the sorting technique, the time complexity can be reduced. In our previous work [54] , we used hash

buckets to approximately represent the neighborhood granular structure. Then following the idea of Algorithm 3 , we can

present a fast positive region computing algorithm for the neighborhood rough set model based on the hash buckets. Before

presenting the fast algorithm, we introduce below the definition and the theorem related to the hash buckets. 

Definition 13. In a neighborhood decision system NDS = 〈 U, C ∪ D, ε 〉 , x 0 is a special object constructed from U , where ∀ a ∈
C , a ( x 0 ) = min { a ( x i ) } , x i ∈ U . Then, the objects in U can be divided into finite buckets B 0 , . . . , B k : 

B k = { x i | x i ∈ Uand � f ( x 0 , x i ) /ε� = k } . 
The bucket can be regarded as a hash function mapping with the distance from x i to x 0 . As a result, the distribution of

objects can be illustrated in Fig. 2 . Based on the definition of buckets, we obtain the following theorem. 

Theorem 9. In a neighborhood decision system NDS = 〈 U, C ∪ D, ε〉 , B 0 , . . . , B k are the buckets, then ∀ x i ∈
B q ( q = 1 , 2 , 3 , . . . , k, k − 1 ) , and the neighborhood elements of x i are only contained in B q −1 , B q , B q +1 . If x i ∈ B 0 , then the

neighborhood elements are only contained in B 0 , B 1 . If x i ∈ B k , then the neighborhood elements of x i are only contained in

B k −1 , B k . 

The detailed proof is in [54] . As shown in Fig. 2 , the neighborhood set of x i can be viewed as a hypersphere with a center

of x i and a radius of ε. The elements in x i ’s neighborhood set are only located at the buckets B k −1 , B k , B k +1 , where B k is the

bucket that contains x i , B k −1 , and B k +1 are x i ’s adjacent buckets. Based on Theorem 9 , the neighborhood granular structure

can be constructed quickly by iterating fewer objects. The fast algorithm that is employed to compute the positive region in

the neighborhood rough set is presented as follows. Step 2 maps all objects into their corresponding hash buckets with the

temporal complexity of O (| U |). Assuming there are k buckets, step 3 constructs granular structure GS N B with computation

cost | B 0 | × | B 1 | + | B k −1 | × | B k | + 

∑ k −1 
i =1 | B i | × (| B i −1 | + | B i | + B i +1 ) , which is related to the distribution of objects. If the objects

are averaged into the buckets, the computational times are | U| 2 
k 

× 2 + (| U| − | U| 
k 

× 2) × ( | U| 
k 

× 3) . In most cases, k will be

close to | U |, then, the computational times of step 3 can approximate to 
∑ n 

i =1 | IG 

N B 
x | , that is, the temporal complexity of
i 
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Fig. 2. The distribution of the buckets after mapping [54] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

step 3 can be approximated to O ( c | U |). Here, | IG 

N B 
x i 

| is the number of objects in a neighborhood information granule ε( x i ),

c is a constant. Step 4 iterates each neighborhood information granule and tests whether or not the objects in it have the

same decision. If they have the same decision, x i is in the decision positive region. The temporal complexity of step 4 is

O | U |. So the total computational complexity of Algorithm 5 can approximate to O ( c | U |). 

Algorithm 5 Fast positive region computing algorithm for neighborhood rough set model. 

Input: 〈 U, C ∪ D 〉 , B ⊆ C, ε; 

Output: GS N B and P OS N B (D ) . 

step 1. GS N B ← φ, P OS N B (D ) ← φ; 

step 2. for each x i ∈ U 

{ map each x i into its corresponding bucket B k by hash function } ; 
step 3. for each x i ∈ U//Constructing the neighborhood granular structure 

{ compute IG 

N B 
x i 

in B k −1 ∪ B k ∪ B k +1 ,// IG 

N B 
x i 

is ε(x i ) 

GS N B ← GS N B ∪ IG 

N B 
x i 

} ; 
step 4. for each IG 

N B 
x i 

∈ GS N B (x i ∈ U) //Iterating the neighborhood granular structure 

{ if the decision of IG 

N B 
x i 

is consistent, then P OS N B (D ) ← P OS N B (D ) ∪ x i } ; 
step 5. return GS N B and P OS N B (D ) . 

4.4. Fast positive region computing algorithm for fuzzy rough set theory 

Attribute reduction using fuzzy rough sets was first proposed by Jenson and Shen [19] , and there are also many improved

approaches [1,12,21,23] . Generally, to construct the fuzzy information granule of x i we needs to compute the similarity de-

grees between x i and all the other objects. In Section 3 , we observe that the fuzzy attribute reduction can be transformed

to our GIRM when employing Dubois’s fuzzy rough set model. In GIRM, the calculation for the membership degree of the

object x i belonging to the decision positive region concerns only the objects that are not in the x ′ 
i 
s decision class, reducing

the computation required in the step to calculate fuzzy information granules. Based on this idea, we present a fast positive

region computing algorithm for fuzzy rough set as follows. 

Step 2 needs to calculate | U | times to obtain decision classes U / D , this step aims to quickly search the objects that

have the conflict decisions with the object x i . Generally, computing fuzzy granular structure depends on the relation matrix

M ( S B ) with the computation cost of | U | 2 . Based on our GIRM, assuming the number of decision classes is t , the calculation

of the relation matrix M ( S B ) can be simplified to the calculation of the relation matrix M 

′ 
(S B ) . Both M ( S B ) and M 

′ 
(S B ) are

represented in the following, r ij is the similarity degree μS B 
(x i , x j ) between x i and x j , D mn is the block of relation matrix
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Algorithm 6 Fast positive region computing algorithm for fuzzy rough set model. 

Input: 〈 U, C ∪ D 〉 , B ⊆ C; 

Output: P OS S B (D ) . 

step 1. GS S B ← φ; 

step 2. for each x i ∈ U 

{ Mapping x i in decision classes D 1 , D 2 , . . . , D t } ; 
step 3. for each x i ∈ U // Constructing the fuzzy granular structure 

{ compute fuzzy information granular IG 

S B 
x i 

on U − D k where x i ∈ D k , 

GS S B ← GS S B ∪ IG 

S B 
x i 

} ; 
step 4. for each IG 

S B 
x i 

∈ GS S B // Iterating the fuzzy granular structure 

{ compute the membership degree of x i belonging to the decision positive region μPOS S B 
D (x i ) } ; 

step 5. return P OS S B (D ) . 

Table 2 

Data description. 

Data Object number Attribute number Attribute category Classies 

1 Balance scale 625 4 Symbolic 4 

2 Car evaluation 1728 6 Symbolic 4 

3 Chess 3196 36 Symbolic 2 

4 Connect-4 67,557 42 Symbolic 2 

5 Landsat 4435 36 Numerical 7 

6 Magic gamma telescope (Mgt) 19,020 11 Numerical 2 

7 Mushroom 8124 22 Symbolic 2 

8 Nursery 12,960 8 Numerical 5 

9 Page blocks 5473 10 Numerical 5 

10 Pendigits 10,992 17 Numerical 10 

11 Segmentation 2310 19 Numerical 7 

12 Vehicle 846 18 Numerical 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

containing the similarity degree μS B 
(x i , x j ) for x i ∈ D m 

and x j ∈ D n . Therefore, step 3 constructs the fuzzy granular structure

with the computational times of 
∑ t 

i =1 | D i | × (| U| − | D i | ) , which is related to the distribution of objects. If the objects are

averagely divided into the decision classes, the computational times of step 3 are t−1 
t × | U| 2 . Comparing to the computation

cost | U | 2 in the previous work, step 3 in Algorithm 6 can reduce much time, and the fewer the number of decision classes

is, the more time it saves. Step 4 iterates the fuzzy granular structure to compute the membership degree of each object

belonging to the decision positive region, the computation cost of step 4 is the same as step 3. So Algorithm 6 can quickly

compute the decision positive region in fuzzy rough set model. ⎡ 

⎢ ⎢ ⎣ 

IG 

S B 
x 1 

IG 

S B 
x 2 
. . . 

IG 

S B 
x n 

⎤ 

⎥ ⎥ ⎦ 

= M(S B ) = 

⎡ 

⎢ ⎢ ⎣ 

r 11 r 12 · · · r 1 n 
r 21 r 22 · · · r 2 n 

. . . 
. . . 

. . . 
. . . 

r n 1 r n 2 · · · r nn 

⎤ 

⎥ ⎥ ⎦ 

⇒ M 

′ 
(S B ) = 

⎡ 

⎢ ⎢ ⎣ 

ø D 12 · · · D 1 t 

D 21 ø · · · D 2 t 

. . . 
. . . ø

. . . 
D t1 D t2 · · · ø

⎤ 

⎥ ⎥ ⎦ 

5. Experiments 

In the previous section, we discussed the attribute reduction algorithms and the acceleration policies. In this section, we

discuss the comparable experiments to evaluate the correctness and efficiency of algorithms with acceleration policies on

three typical rough set models. We used 12 datasets from UCI, and the details are shown in Table 2 . 

We run all of the algorithms on the same software and hardware platforms (CPU:Intel (R) core (TM)i7-4770 @3.40 Hz;

RAM: 8.00 GB; Windows 7; Python 2.7). We execute the same algorithm on the same input dataset over 10 times, and we

calculated the average execution time. 

5.1. Experiments using classical rough set model 

We compare four algorithms based on the classical rough set model. Algorithm C [18] is the generalized forward greedy

classical attribute reduction algorithm without any acceleration policies. Algorithm C1 is the quick attribute reduction algo-

rithm that uses the first acceleration policy, reducing the computational domain(F2DARPRS in [13] ). Algorithm C2 employs

the second acceleration policy, optimizing the computation of the classical granular structure by Algorithm 4 , without using

the first acceleration policy. Algorithm C12 uses both the first and second acceleration policies. We employ six datasets from
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Table 3 

The reduction results of four algorithms in classical rough set model. 

Dataset C C1 C2 C12 

Balance scale 1 1 1 1 

Car evaluation 4,6 4,6 4,6 4,6 

Chess 21,10,29,14,28 21,10,29,14,28 21,10,29,14,28 21,10,29,14,28 

Connect-4 1,36,7,13,31,25,19,37,2, 

38,14,8,20,15,32,21,26,9, 

3,39,33,16,27,10,22,4,28, 

34,41,17,11,23,5,29 

1,36,7,13,31,25,19,37,2, 

38,14,8,20,15,32,21,26,9, 

3,39,33,16,27,10,22,4,28, 

34,41,17,11,23,5,29 

1,36,7,13,31,25,19,37,2, 

38,14,8,20,15,32,21,26,9, 

3,39,33,16,27,10,22,4,28, 

34,41,17,11,23,5,29 

1,36,7,13,31,25,19,37,2, 

38,14,8,20,15,32,21,26,9, 

3,39,33,16,27,10,22,4,28, 

34,41,17,11,23,5,29 

Mushroom 5,19,8,12,3 5,19,8,12,3 5,19,8,12,3 5,19,8,12,3 

Nursery 8 8 8 8 

Fig. 3. The reduction time and positive region computational time in classical rough set model. The Y-axis is the computational time (S). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 , i.e., balance scale, car evaluation, chess, connect-4, mushroom, and nursery . Those data are symbolic with the numbers

from 625 to 67,557. 

We first evaluate the correctness of the above four algorithms. The reduction results obtained for each dataset are shown

in Table 3 . On the same dataset, all four algorithms can output exactly the same reduction result. 

In addition, we perform the comparable efficiency evaluation experiments on those datasets in Table 3 . The temporal

computation results of those four algorithms are shown in Fig. 3 , where the shadow of each bar represents the total positive

region computation time in the reduction, and the bar represents the whole reduction time. The high proportion of the

shadow to the bar indicates that the largest portion of the reduction is computing the positive region. Considering the time

for computing positive region, C12 always achieves the best performance in those four algorithms, C2 always performs better

than C1 except on the mushroom dataset, while C1 performs better than C2 only on this dataset. After further analysis, we

find that only the mushroom dataset leaves 25% of all objects continue to be proceeded after the first attribute is selected

into the reduction subset, which is not common in most practical applications. Therefore, C1 has the advantage on this

dataset. As shown in Fig. 3 , the second acceleration policy may be more generalized than the first acceleration policy. 

Further, we measure the computation time of the positive region based on all attributes of the dataset(denoted as the

single positive region computational time), with the number of objects increasing in C and C2. These two algorithms were

executed on exactly the same data objects. The results in Fig. 4 show that C2 is much faster than C, especially on the large

datasets such as connect-4, mushroom . Then, the results indicate that Algorithm 4 (the second proposed policy) can promote

the efficiency to compute the classical granular structure. 
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Fig. 4. The single positive region computational time in classical rough set model. The X-axis represents the number of objects and the Y-axis is the 

computational time (S). 

Table 4 

The reduction results of four algorithms in neighborhood rough set model. 

Dataset ε N N1 N2 N12 

Landsat 0.05 20,32,29,2,21,5,26,23,11, 

30,3,1,9,6,7 

20,32,29,2,21,5,26,23,11, 

30,3,1,9,6,7 

20,32,29,2,21,5,26,23,11, 

30,3,1,9,6,7 

20,32,29,2,21,5,26,23,11, 

30,3,1,9,6,7 

Mgt 0.3 7,8,6,9,10,4,1,2,3,5 7,8,6,9,10,4,1,2,3,5 7,8,6,9,10,4,1,2,3,5 7,8,6,9,10,4,1,2,3,5 

Page blocks 0.1 8,6,10,2,5,4,1,9,3,7 8,6,10,2,5,4,1,9,3,7 8,6,10,2,5,4,1,9,3,7 8,6,10,2,5,4,1,9,3,7 

Pendigits 0.03 4,16,5,10,9,7,1 4,16,5,10,9,7,1 4,16,5,10,9,7,1 4,16,5,10,9,7,1 

Segmentation 0.12 19,17,2,1,14,18,16,6,8,4 19,17,2,1,14,18,16,6,8,4 19,17,2,1,14,18,16,6,8,4 19,17,2,1,14,18,16,6,8,4 

Vehicle 0.16 9,19,15,18,16,13,1,4,11 9,19,15,18,16,13,1,4,11 9,19,15,18,16,13,1,4,11 9,19,15,18,16,13,1,4,11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Experiments using neighborhood rough set model 

We evaluate the correctness and computational efficiency of four attribute reduction algorithms based on the neighbor-

hood rough set model. Algorithm N is the generalized forward greedy neighborhood attribute reduction algorithm(NFARNRS

in [13] ). Algorithm N1 uses the first acceleration policy reducing the computational domain(F2HARNRS in [13] ). Algorithm

N2 uses the second acceleration policy, optimizing the computation of the neighborhood granular structure obtained by

Algorithm 5 , without using the first acceleration policy. Algorithm N12 uses both the first and second acceleration policies.

There are six datasets, which consist of numerical attributes from Table 2 , i.e., landsat, magic gemma telescope(mgt), page

blocks, pendigits, segmentation, and vehicle , and the number of objects in those datasets range from 846 to 10,992. 

We compared the reduction results of the above four algorithms with the same ε value on the same dataset, and we

randomly chose the ε value. The reduction results are shown in Table 4 , which shows that these four algorithms output

exactly the same reduction results. 

Then, we evaluate the efficiency of those four algorithms. Different from classical rough set model, the positive region

computational time based on the neighborhood rough set model is almost equal to the reduction computational time. So

Fig. 5 only draws the computation time of the reduction, and is added to the legend to denote the ratio of the computation

time between the positive region and the reduction. The results in Fig. 5 show that N12 achieves the best performance of all

the datasets, specifically, N12 is 55 times faster than N in the segmentation dataset, and N12 is 90 times faster than N in the

landsat dataset. Moreover, both N1 and N2 can achieve better performances than N. Fig. 5 shows that the first acceleration

policy and the fast neighborhood granular computing method in Algorithm 5 (the second policy) are much more effective

strategies to reduce the reduction time in the neighborhood rough set model. 

In the experiment described below, we increase the number of objects and measure the single positive region compu-

tational time in N and N2. We executed the two algorithms on exactly the same data objects. The ε value for each dataset

was the same as that in the Table 4 . The execution time obtained for various objects is shown in Fig. 6 . This figure shows

that N2 always performs better than N1, and that the single positive region computation costs for N increase significantly,

while the costs for N2 increase much slower as the number of dataset is increased. We observe that the difference in the

growth rates between N and N2 is less significant on vehicle dataset compared to the other five datasets. Compared to the

number of the datasets for the original object, there are significantly fewer objects in the vehicle , so on this dataset, N2 has



30 F. Jing et al. / Information Sciences 397–398 (2017) 15–36 

Fig. 5. The reduction computational time in neighborhood rough set model. The Y-axis represents the computational time (S), while the legend denotes 

the ratio of the computational time between the positive region and the reduction. 

Fig. 6. The single positive region computational time in neighborhood rough set model. The X-axis is the number of objects and the Y-axis is the compu- 

tational time (S). 

 

 

 

 

 

 

 

 

 

slight advantage. Fig. 6 shows that the second acceleration policy employed in N2 can promote efficiency to compute the

positive region, especially when there is a large number of objects. 

Fig. 6 also shows that the increase in the cost to compute the single positive region is nearly linear in N2. For further

study the efficiency of the second acceleration policy employed in N2, we perform an additional experiment to compare

the relation between the theoretical time complexity and the real running time required to compute the single positive

region in N2. Let B be the original attribute set. According to Theorem 8 , the time complexity to compute the single positive

region is O (T (GS N B ) + 
∑ | IG 

N B 
x i 

| ) , where T (GS N B ) is the computation to construct the neighborhood granular structure and∑ | IG 

R B 
x i 

| is the computation to traverse the neighborhood granular structure. The basic operations to construct GS N B are

mapping object x i in buckets and computing the distance between x i and other object. We can use the number of the basic

operations to calculate T (GS N B ) for the construction of GS N B , which is equal to | U| + 

∑ | U| 
i =1 

(| B j−1 | + | B j | + | B j+1 | ) , where x i
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Fig. 7. The theoretical time complexity and the real running time required to compute the single positive region in neighborhood rough set model. The 

Y-axis in (a) is the number of basic operations(constructing the neighborhood structure) required to compute the single positive region, and the Y-axis in 

(b) is the real running time required (S) to compute the single positive region. 

Fig. 8. The single positive region computational time for various values of ε in N2. The X-axis is the value of ε, and the Y-axis is the computational time 

(S). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∈ B j , B j is the hash bucket. As 
∑ | IG 

N B 
x i 

| is smaller than T (GS N B ) , T (GS N B ) can be used to evaluate the time complexity to

compute the positive region. The result for the landsat dataset is shown in Fig. 7 (a). The vertical axis in Fig. 7 (a) represents

the number of basic operations(constructing the neighborhood structure) that are required to compute the single positive

region in N2. Fig. 7 (b) shows the corresponding real running time. By comparing Fig. 7 (a) and (b), we find that the curves

are very similar, which can further verify our theoretical analysis on the time complexity. 

The computation of the neighborhood granular structures is sensitive to the setting of ε, so we choose three datasets,

pendigits, segmentation, and vehicle , to evaluate the single positive region computation performance for various values of ε,

which ranges from 0 to 0.2. There are 10,992, 2310, and 846 objects in pendigits, segmentation, and vehicle , respectively. The

results in Fig. 8 show that N2 and N12 perform much better than N and N1, respectively. 

5.3. Experiments using fuzzy rough set model 

In this section, we evaluate the correctness and computational efficiency of four attribute reduction algorithms based on

the fuzzy rough set model. Algorithm F is the generalized forward greedy fuzzy attribute reduction algorithm [23] . Algorithm

F1 uses the first acceleration policy [38] . Algorithm F2 uses the second acceleration policy, which optimizes the computation

of the fuzzy granular structure with Algorithm 6 . Algorithm F12 uses both acceleration policies. The datasets are the same

as those used in the neighborhood rough set model. 

In the first experiment, the value of the fuzzy similarity degree μS a (x i ,x j ) 
between objects x i and x j with respect to

numerical attribute a is computed as 

μS a (x i , x j ) = 1 − a (x i ) − a (x j ) 

a max − a min 

. (1)

Table 5 shows the reduction results of four algorithms for each dataset. The results of the attribute reductions are exactly

the same on the same dataset. 

In the computational efficiency experiment, similar to the neighborhood rough set model, Fig. 9 displays only the results

of the reduction time, and the legend denotes the ratio of the computational time between the positive region and the

reduction. The results show that the computational time of F1 is nearly the same as that of F2. The reason is that using the

formula (1) to compute the fuzzy similarity degree between objects, the degree of objects belonging to the positive region

hardly reaches one. Then, the first acceleration policy does not perform well. In Fig. 9 , it is easy to see that F2 is always

faster than F. In particular, for large dataset, F2 results in a time savings of 2828s compared to F on the mgt dataset and F2
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Table 5 

The reduction results of four algorithms using formula (1) in fuzzy rough set model. 

Dataset F F1 F2 F12 

Landsat 20,5,22,33,13,34,36,4,25, 

15,35,21,6,26,27,7,8,17, 

14,10,30,28,23,2,12,1 

20,5,22,33,13,34,36,4,25, 

15,35,21,6,26,27,7,8,17, 

14,10,30,28,23,2,12,1 

20,5,22,33,13,34,36,4,25, 

15,35,21,6,26,27,7,8,17, 

14,10,30,28,23,2,12,1 

20,5,22,33,13,34,36,4,25, 

15,35,21,6,26,27,7,8,17, 

14,10,30,28,23,2,12,1 

Mgt 7,9,10,4,8,6,5,3,1,2 7,9,10,4,8,6,5,3,1,2 7,9,10,4,8,6,5,3,1,2 7,9,10,4,8,6,5,3,1,2 

Page blocks 6,5,2,9,4,1,10,8,3,7 6,5,2,9,4,1,10,8,3,7 6,5,2,9,4,1,10,8,3,7 6,5,2,9,4,1,10,8,3,7 

Pendigits 4,8,19,15,1,16,5,7,10, 

13,3,12,2,11,14,6 

4,8,19,15,1,16,5,7,10, 

13,3,12,2,11,14,6 

4,8,19,15,1,16,5,7,10, 

13,3,12,2,11,14,6 

4,8,19,15,1,16,5,7,10, 

13,3,12,2,11,14,6 

Segmentation 19,14,11,2,1,16,18,4,5, 6,8,13,7 19,14,11,2,1,16,18,4,5, 6,8,13,7 19,14,11,2,1,16,18,4,5, 6,8,13,7 19,14,11,2,1,16,18,4,5, 6,8,13,7 

Vehicle 12,18,15,10,1,3,8,13,4, 

17,2,6,9,5,14 

12,18,15,10,1,3,8,13,4, 

17,2,6,9,5,14 

12,18,15,10,1,3,8,13,4, 

17,2,6,9,5,14 

12,18,15,10,1,3,8,13,4, 

17,2,6,9,5,14 

Fig. 9. The reduction computational time in fuzzy rough set model. The Y-axis represents the computational time (S), the legend denotes the ratio of the 

computational time between the positive region and the reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

results in a time savings of 3567s compared to F on the landsat dataset. Thus, the second policy can effectively reduce the

computational time in fuzzy rough set model. 

We also evaluate the single positive region computational time in F and F2 as the number of objects increases, and

the four algorithms are executed on exactly the same data objects. We present the results in Fig. 10 , which shows that

F2 is always faster than F. Therefore, the proposed Algorithm 6 (the second policy) can quickly compute the fuzzy granular

structure. 

As the degree of objects belonging to the positive region is closely related to the fuzzy similarity relation, we design the

second experiment using the following formula to compute the fuzzy similarity degree [38] 

μ
S 
′ 
a 
(x i , x j ) = 

{
1 − 4 × | a (x i ) − a (x j ) | , | a (x i ) − a (x j ) | ≤ 0 . 25 

0 , otherwise 
(2) 

In this experiment, we compare the reduction results of F and F1 as well as their reduction time on six datasets. The results

are shown in Table 6 and Fig. 11 . Table 6 shows that the reductions of the two algorithms are the same for each dataset.

Fig. 11 shows that F1 is always faster than F, e.g., in the segmentation dataset, the time cost of F1 is 1/3 of F’s, in the pendigits

dataset, the time cost of F1 is 1/2 of F’s. In fuzzy rough set model, the effectiveness of the first policy is closely related to

the fuzzy similarity relation, and the second policy that optimizes the fuzzy granular structure using Algorithm 6 is more

generalized. 

5.4. Experiments using feature selection algorithms 

We also carry out comparative experiments using feature selection algorithm [5,11] , which is an important data pre-

processing method outside the rough set. Similar to the reduction in the rough set, there are four basic steps in a typical
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Fig. 10. The single positive region computational time in fuzzy rough set model. The X-axis represents the number of objects, and the Y-axis is the 

computational time (S). 

Table 6 

The reduction results of four algorithms using formula (2) in fuzzy rough set model. 

Dataset FAR FAR + P1 

Landsat 20,5,22,33,13,34,36,6,25, 

26,12,15,21,7,35,30,23,1, 

28,29,27,17,19,16,14,31,8, 

11,32,10,9,2,4,3,18,24 

20,5,22,33,13,34,36,6,25, 

26,12,15,21,7,35,30,23,1, 

28,29,27,17,19,16,14,31,8, 

11,32,10,9,2,4,3,18,24 

Mgt 7,9,10,4,8,6,5,3,1,2 7,9,10,4,8,6,5,3,1,2 

Page blocks 6,5,2,9,4,1,10,8,3 6,5,2,9,4,1,10,8,3 

Pendigits 4,8,9,15,1,16,5,3,11, 

10,2,7,13,12,6,14 

4,8,9,15,1,16,5,3,11, 

10,2,7,13,12,6,14 

Segmentation 19,12,2,14,1,16,18,4,5, 8,6,11 19,12,2,14,1,16,18,4,5, 8,6,11 

Vehicle 12,10,18,15,16,1,3,13,4, 

8,17,2,5,9,6 

12,10,18,15,16,1,3,13,4, 

8,17,2,5,9,6 

Fig. 11. The reduction computational time using formula (2) in fuzzy rough set model. The Y-axis represents the computational time (S), and the legend 

denotes the ratio of the computational time between the positive region and the reduction. 

 

 

 

 

 

 

 

 

 

 

feature selection method, i.e. feature evaluation, search strategies, stopping criterion, and validation strategies. Many eval-

uation criteria are used to measure the quality of the candidate subset. Then, we choose two typical evaluation criteria to

design experiments. In each group of experiments, the compared algorithms select the same features on the same dataset.

Here, we no longer provide details about the feature selection results. 

The first evaluation criterion is the consistency measure [5] that captures the natural objective of feature selection. We

employ the forward greedy search strategy and set the inconsistency rate threshold to 5%. We use CFS to denote the gen-

eralized consistency based feature selection algorithm without any acceleration policies. We use CFS1 and CFS2 to denote

the algorithms that employ the first and second acceleration policies, respectively. CFS12 denotes the algorithm with both

acceleration policies. We compare the efficiency of those four algorithms on 6 datasets, i.e., balance scale, car evaluation,

chess, connect-4, mushroom, and nursery in Table 2 . Fig. 12 shows that CFS12 always results in a greater computational time

than the other three algorithms, CFS1 clearly performs better than CFS except on the mushroom dataset. We find that only
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Fig. 12. The computational time of consistency based feature selection algorithms. The Y-axis is the computational time (S). 

Fig. 13. The computational time of NDER based feature selection algorithms. The Y-axis is the computational time (S). 

 

 

 

 

 

 

 

 

 

 

 

 

one feature is selected as the feature-selection result in the mushroom dataset, so the first acceleration policy does not work

on this dataset. Fig. 12 shows that the first and second acceleration policies can significantly improve the efficiency of the

consistency based feature selection algorithm. 

The second evaluation criterion is the neighborhood decision error rate(NDER) measure [11] , which minimizes the classi-

fication risk of the selected feature subset. In our experiments, NFS is the sequentially forward selection algorithm based on

NDER(SFS-NDER in [11] ), and NFS12 is the improved NFS algorithm with both the first and second acceleration policies. The

following experiment employs six datasets, i.e., landsat, mgt, page blocks, pendigits, segmentation, and vehicle . Fig. 13 shows

the computational time of the above two algorithms. The results show that NFS12 always performs better than NFS, espe-

cially on the landsat and pendigits datasets, and the time costs of NFS12 are only 1/10 of that of NFS. Thus our acceleration

policies can also significantly improve the efficiency of NDER based feature selection algorithms. 

6. Conclusion and future work 

Attribute reduction based on rough sets is an existing method that deals with the large amounts of data. Despite the

presence of many fast attribute reduction algorithms, they closely depend on the specific indiscernibility relation. In this

paper, we proposed a generalized indiscernibility reduction model in which the concept of the granular structure is a quan-

titative measurement induced from different indiscernibility relations. On basis of the generalized model, we present a
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generalized attribute reduction algorithm and a generalized positive region computing algorithm. Based on the granular

structure, we quantitatively analyze the complexity of the two algorithms. We proposed acceleration policies for the two

generalized algorithms, and we designed fast approaches in the three typical reduction models, i.e., the classical rough set

model, neighborhood rough set model, and fuzzy rough set model. The experiments show that the application of our fast

approaches to the three typical reduction models can achieve expected efficiency. With respect to future work, we will try

to present more generalized indiscernibility reduction model that incorporates the fuzzy rough set models that are based

on various fuzzy approximation operators. We will also try to extend generalized attribute reduction models to a parallel

framework, this will be helpful to explore complex Big Data problems using granular computing theory. 
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