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Abstract: Pancreatic cancer is a highly lethal disease with a poor prognosis. Its early diagnosis and
accurate treatment mainly rely on medical imaging, so accurate medical image analysis is especially
vital for pancreatic cancer patients. However, medical image analysis of pancreatic cancer is facing
challenges due to ambiguous symptoms, high misdiagnosis rates, and significant financial costs.
Artificial intelligence (AI) offers a promising solution by relieving medical personnel’s workload,
improving clinical decision-making, and reducing patient costs. This study focuses on AI applications
such as segmentation, classification, object detection, and prognosis prediction across five types of
medical imaging: CT, MRI, EUS, PET, and pathological images, as well as integrating these imaging
modalities to boost diagnostic accuracy and treatment efficiency. In addition, this study discusses
current hot topics and future directions aimed at overcoming the challenges in AI-enabled automated
pancreatic cancer diagnosis algorithms.
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1. Introduction

Pancreatic cancer (PC) is a lethal digestive tumor with a very poor prognosis. Its
symptoms are often mild until advanced stages, and it tends to recur after surgical re-
moval [1]. Its mortality and morbidity are highly paralleled and pose a great threat to
human health [2]. Pancreatic ductal adenocarcinoma (PDAC) is the most common type of
PC, 80–85% of which present with advanced local or distant metastatic disease, while only
15–20% is suitable for surgical removal. In addition, the 5-year relative survival rate for PC
is 12%, the lowest among all types of cancers [3]. These data suggest that early screening
and diagnosis are important in improving survival outcomes in patients with PC.

Medical imaging techniques are becoming increasingly important for PCs, as they
provide tissue information and could be used for diagnosis, treatment determination, and
prognosis monitoring [4]. Current advanced medical imaging tools primarily include
computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasound
(EUS), positron emission tomography (PET), and pathological images [5,6]. Improvements
based on these imaging tools include EUS-guided fine-needle aspiration (FNA) and biopsy
(FNB), contrast-enhanced EUS (CE-EUS), contrast-enhanced computed tomography (CE-
CT), contrast-enhanced magnetic resonance imaging (CE-MRI), and positron emission
tomography (PET/CT).

The above-mentioned imaging tools have advantages and disadvantages. CT is the
most commonly used tool that acquires tomographic images of the body through X-rays [7].
At the same time, its resolution for small and variable organs like the pancreas is limited.
EUS has a higher resolution but is complicated to operate and the field of view is narrow.
MRI generates soft-tissue imaging and can better distinguish between tumor and normal
tissues, but has a longer time and higher cost. PET reflects tumor metabolism that assesses
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PC metastasis, but has lower resolution and is usually combined with CT. Pathological
imaging is an invasive way of slicing and staining tissue samples. Although there are now
multiple medical imaging modalities available, some early PCs will not be detected by CT,
MRI, or EUS [8]. Manual diagnosis based on currently available imaging techniques is
insufficient. The accurate diagnosis of PC still relies highly on invasive biopsies after the
imaging step, which is complex and time-consuming. This delay may result in patients
missing critical treatment opportunities.

In recent years, the AI-powered image process has been applied to the diagnosis of
PC in the experimental stage with reasonable results, marking the beginning of a shift
from the traditional diagnosis dependent on biopsy. AI is a computer technology that
can simulate specific human behaviors, such as learning, reasoning, problem-solving,
and decision-making. Deep learning is a milestone of AI and utilizes propagation algo-
rithms, which have made significant breakthroughs in automated image analysis with
high Accuracy, Specificity, and Recall in diagnosing PC and differentiating it from chronic
pancreatitis [9,10]. Well-trained AI models can process input medical images and output
analytical results within seconds, minimizing the trauma to the patient. Studies have
shown that AI models report comparable results with medical experts in PC detection
and even better results in some cases [11–14]. Their significant cost and speed advantages
also improve clinical diagnosis, treatment, and prognosis of PC, reducing the workload of
doctors and the financial burden of patients.

For the diagnosis stage, the low prevalence of PC leads to a lack of early screening.
Fast, low-cost AI models facilitate the scaling up of medical image-based early screening.
Small and subtle lesions or precursors that might be missed by traditional diagnostic
methods could be detected. As a result, more potential PC patients could notice their health
condition in time and be operated on as soon as possible. The PC metastasis rate and
mortality will be reduced. For the treatment stage, AI models could predict PC metastasis
and the survival time of patients after surgery using image information [14,15]. Since the
tissue structure of PC is complex and targeted therapies are insufficient for high costs,
AI could help doctors make appropriate treatment decisions and reduce overall costs.
Rational and timely treatment strategies in turn improve the prognostic outcome of PCs.
Studies have shown that, in clinical trials, AI can reduce the burden of routine tasks in
the medical workflow, allowing doctors to spend more time tackling other challenges [16].
Therefore, the automated analysis of pancreatic images by AI is an efficient and convenient
aid to doctors.

1.1. Contribution of This Review

This paper is a comprehensive review of the application of various AI models to
medical images in five modalities of pancreatic images. Sub-types of pancreatic cancer,
evaluation metrics for different tasks, and mainstream AI models are discussed. The main
contributions are as follows:

• There is a brief description of PC, including its characteristics, subtypes, risk factors,
precursor lesions, and clinical challenges.

• There is a summary of the various AI tasks, representative models for each task, and
the metrics used to evaluate the performance of AI models on each task.

• There is an outline of publicly available pancreatic image datasets with different
modalities and comparisons of AI model performance on some of them.

• This paper describes the imaging features of CT, MRI, EUS, PET, pathological images,
and their combination. It also comprehensively discusses the application of AI models
in pancreatic medical image analysis for different tasks on different modalities.

• This paper summarizes visualization tools, deep learning frameworks, and software
for processing and analyzing pancreatic images.

• This paper also discusses current clinical challenges and future research directions for
AI models to improve the outcomes of PC diagnosis and treatment.
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Some reviews have discussed the potential and effectiveness of combining AI tech-
niques and pancreatic images. Cazacu et al. [17] surveyed deep learning models, mainly
CNNs, to differentiate PC and chronic pancreatitis (CP) on EUS images and validated their
high performance in diagnosis. Pereira et al. [18] examined AI in CT and MRI images for
PDAC early detection and prognosis evaluation. Kenner et al. [19] discussed the early
detection of PDAC, the application of AI models to PDAC, the organizational structure to
screen for PDAC, and the reflections of government, industry and advocacy. Yang et al. [20]
outlined early PC screening and diagnosis approaches, such as imaging, pathological ex-
amination, serological examination, and liquid biopsy, with AI recognized as an innovative
potential strategy. Huang et al. [16] summarized AI applications in medical image analysis,
pathological examination, and biomarkers in PC diagnosis; survival time, risk of recurrence,
metastasis, and response to therapy in PC prognosis. Both limitations and significant poten-
tial of AI were identified in their work. Hameed and Krishnan [21] explored the AI-enabled
PC diagnosis on four imaging modalities (EUS, MRI, CT, and PET), cytopathology, and
serological markers. Ethical concerns about AI tools were also noted. Schlanger et al. [22]
discussed AI and machine learning models for three PC surgery stages: preoperative diag-
nosis, intraoperative complication prediction, and prognostic evaluation. Their findings
suggested that, while AI demonstrated great potential in diagnosis and prognosis, its
research on intraoperative applications was still limited. Mikdadi et al. [23] detailed the
advancements of AI in PDAC diagnosis and prognosis from CT images. Jan et al. [24]
synthesized AI techniques in PC prediction and early diagnosis, including AI tasks, models,
medical data types, programming languages, and validation approaches. They noted that
future PDAC detection could rely on a suite of models for whole-body regions rather
than specific organs. Katta et al. [25] reviewed AI in PC biomarkers detection, diagnosis,
and prognosis. They also identified shortcomings of AI applications in knowledge, data
processing, ethics, and clinical implementation. Zhao et al. [26] summarized AI in early
screening, diagnosis, surgical treatment, and prognostic prediction. They also identified
potential dividends in the future despite current limitations of AI in terms of interpretability,
generalizability, sample size, and ethical concerns. Daher et al. [27] delved into machine
learning and deep learning approaches in PC detection based on CT, EUS, MRI, and PET
images and their ethical concerns.

Table 1 compares this paper and existing reviews on AI-enabled pancreatic image
processing. H (high) means that there is an in-depth discussion on this topic in the review
article. M (moderate) represents that the article contained a chapter or paragraph containing
that topic. L (low) implies the article mentioned that topic, but lacked sufficient explanation.
N (none) indicates that the article did not cover the topic. Compared with existing relevant
reviews, our work covers a wider range of topics and discusses them more in depth.

Table 1. Comparison of this paper with existing reviews in AI-enabled pancreatic image analysis.

Reference Year Brief Summary

AI Models in
Pancreatic
Imaging

Processing

Multiple AI
Tasks and
Evaluation

Metrics

Different
Pancreatic
Imaging

Modalities

Future
Directions for

AI in PC
Research

[17] 2019 A review on deep learning in the
differential diagnosis of PC and CP M L N L

[18] 2020 A review on early detection of PC L L M N

[19] 2021 A summative review on PDAC
early detection H L M N

[20] 2021 A comprehensive review on PC
screening and diagnosis strategies L L H N

[16] 2022 A review on application of AI in
PC diagnosis H H M M
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Table 1. Cont.

Reference Year Brief Summary

AI Models in
Pancreatic
Imaging

Processing

Multiple AI
Tasks and
Evaluation

Metrics

Different
Pancreatic
Imaging

Modalities

Future
Directions for

AI in PC
Research

[21] 2022
A review on AI in PC diagnosis

based on medical imaging
and biomarkers

H L H N

[22] 2022
A systematic review on AI and

machine learning in
pancreatic surgery

M L M H

[23] 2022 A review on AI in PDAC diagnosis
and prognosis from CT images H H N H

[24] 2023 A scoping review on PC diagnosis
and prediction using AI M M N M

[25] 2023
A narrative review on AI in PC
diagnosis, biomarkers detection,

and prognosis
L L M M

[26] 2024 A review on AI in various aspects
of PC H M M H

[27] 2024 A review on AI in PC
early diagnosis H M M N

This paper - A comprehensive review on AI in
pancreatic images processing H H H H

Depth of discussion: H—high, M—moderate, L—low, N—not discussed.

1.2. Structure of This Review

This paper aims to discuss the current status and future direction of AI applications in
pancreatic image processing. By summarizing the AI methods for detecting PCs, it provides
an effective reference for PC early screening and diagnostic solutions and promotes poten-
tial transformations in the field of medical diagnosis. Section 2 provides an overview of the
databases used, literature search methods, and selection strategies. Section 3 discusses the
subtypes of PC, its challenges in clinical diagnosis and treatment, and the significance of AI
applications. Section 4 reviews the currently publicly available pancreatic medical imaging
datasets. Section 5 outlines different AI tasks, representative models, and evaluation metrics
for the performance of the models on these tasks. Sections 6–10 summarize the application
of AI models on CT, MRI, EUS, PET, and pathological images, respectively. Section 11
reviews the application of AI models combining multiple image modalities. Section 12 lists
the software, frameworks, and tools for analyzing medical image data. Section 13 points
out future research topics.

2. Materials and Methods
2.1. Search Strategy and Literature Sources

We follow the PRISMA guidelines [28] (preferred reporting items for systematic
reviews and meta-analyses) and search for relevant articles through repositories and
databases such as IEEE, ScienceDirect, PubMed, Web of Science, Scopus, etc. Table 2
shows sets of keywords associated with terms used to search the literature, including
pancreatic cancer, cancer diagnosis, AI task, deep learning, machine learning, etc. A total of
370 nonduplicated articles were initially screened based on these keywords.

2.2. Selection Criteria

Each article initially screened was confirmed by two authors for inclusion, with a third
author deciding if there was disagreement. Articles published within the last two decades
(2004–2024) were included. Research quality, information completeness, journal authority,
citation number, relevancy, and redundancy were considered in the elimination process.
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Table 2. Search terms.

Search Term Set of Keywords

Pancreatic pancreatic cancer, pancreatic lesion, pancreatic cancer diagnosis, pancreatic cancer detection,
pancreatic ductal adenocarcinoma, pancreatic neuroendocrine tumors

Cancer cancer subtypes, precursor lesions, cancer diagnosis, cancer treatment

AI task
classification, segmentation, object detection, prognosis prediction, image registration, image

generation, super-resolution, denoising, reconstruction, medical visual question answering, natural
language processing

Image modality CT, MRI, EUS, PET, pathological images, PET/CT, multimodal fusion, multiple modalities,
cross-modality, modality conversion

Machine learning
Cox proportional hazards regression, Logistic regression, least absolute shrinkage and selection
operator regression, decision tree, support vector machine, random forest, ensemble learning,

k-nearest neighbors, k-means clustering

Deep learning
convolutional neural networks, fully convolutional neural networks, transformers, recurrent neural
networks, long short-term memory, you only look once, graph neural networks, federated learning,

reinforcement learning, neural architecture search

Large model contrastive language-image pretraining, segment anything model

2.3. Results

Of the 370 articles initially screened from various databases, 108 were excluded by
screening the titles and abstracts. In addition, 75 articles were excluded by full-text analysis
due to research quality, incomplete information, journal reputation, redundancy, etc. In
addition, 19 additional reports were added when we reviewed the references of the selected
articles, websites of public datasets, and relevant organizations. In the end, 198 reports
were used to develop this review based on the selection criteria. Figure 1 shows the PRISMA
implementation process.

Records identified from: 370
Databases (n = 6)
Registers (n = 0)

Identification of new studies via databases and registers

Records screened (n = 262)

Reports sought for retrieval (n = 187)

Reports assessed for eligibility (n = 187)

Reports of new included studies (n = 19)

Reports of total included studies (n = 198)

Records removed before screening:
Duplicate records removed (n = 11)
Records marked as ineligible by authors 
(n = 73)
Records removed for other reasons
(n = 24)

Records excluded (n = 75)

Reports not retrieved (n = 0)

Reports excluded:
Incomplete information (n = 3)
Redundancy (n = 2)
Other reasons (n = 3)

Identification of new studies via other methods

Records identified from:
Websites (n = 5)
Organisations (n = 9)
Citation searching (n = 24)

Reports sought for retrieval (n = 38) Reports not retrieved (n = 0)

Reports assessed for eligibility (n = 38) Reports excluded:
Incomplete information (n = 2)
Redundancy (n = 0)
Other reasons (n = 15)

Id
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n
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Figure 1. PRISMA flowchart.

3. Pancreatic Cancer and Clinical Challenges
3.1. Introduction to Pancreatic Cancer

The pancreas consists of the head, neck, body and tail of the pancreas, located in the
abdominal cavity. PC is usually referred to as a tumor that arises within the epithelial cells
of the pancreas [29]. Smoking, obesity, diabetes mellitus, alcohol, pancreatitis, allergies,
the microbiome, the environment, occupation, family history of cancer, and CP are risk
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factors of PCs [30,31]. Autoimmune pancreatitis (AIP) is a rare form of CP [31]. Pancreatic
intraepithelial neoplasms (PanINs), intraductal papillary mucinous neoplasms (IPMNs),
and mucinous cystic neoplasms (MCNs) are precursor lesions of PC [32].

PC presents in two common types: pancreatic ductal adenocarcinoma (PDAC) and
pancreatic neuroendocrine tumor (pNET) [33]. PDAC accounts for more than 90% of
PCs and is the most prevalent type, while pNET is relatively rare, accounting for less
than 5% [34]. Among other rare types, solid pseudopapillary neoplasm (SPN) represents
0.2–2.7% of PCs, which typically affects young females [35]. Additional infrequent types of
PC include serous cystic neoplasms (SCN), pancreatic adenosquamous carcinoma (PASC),
acinar cell carcinoma (ACC), etc. [36–39]. Due to their rarity, these tumors lack large-scale
clinical studies, and many issues remain unclear. Using AI to differentiate between these
tumors can help doctors learn their characteristics. Figure 2 shows the relationship between
these lesions.

Pancreatic Cancer PDAC pNET

Common Sub-types

Other Sub-types

SPN SCN

PASC ACC

Precursor Lesions

IPMNPanIN MCN

Risk Factors

CP AIP

Figure 2. Precursors, risk factors, and subtypes of PC.

3.1.1. Pancreatic Ductal Adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is a malignancy affecting the exocrine pan-
creas and involving acinar and duct cells with a contentious origin. Although traditionally
believed to originate from duct cells, studies in rodents have suggested an alternative origin
from acinar cells [40]. The development of PDAC typically commences with pancreatic
intraepithelial neoplasias, marked by the accrual of genetic mutations. Some cases of
PDAC are attributed to these precursor lesions, such as IPMN [1]. According to statistical
analysis on data from the SEER cancer registry [41], PDAC located in the body and tail
of the pancreas is associated with worse survival than PDAC located in the head of the
pancreas [42]. As PDAC advances, its potential for extensive spread becomes pronounced
once it reaches a critical size at its primary site, underscoring the aggressive nature of this
malignancy [43]. According to the gene expression profiles of malignant epithelial cells,
PDAC can be divided into subtypes [44]. In the two-group classification, the main subtypes
of PDAC include the classical subtype and the basal-like subtype. The basal-like subtype
has been associated with a poorer prognosis and a more aggressive phenotype [45–47].

3.1.2. Pancreatic Neuroendocrine Tumors

Pancreatic neuroendocrine tumor (pNET) is a rare and diverse neoplasm. According
to population studies, the incidence of pNET is less than 1 in 100,000 [48]. However,
with increasing use of CT scans, the incidence has doubled in the last few decades [49].
pNET arises from pancreatic neuroendocrine cells. They are found in various organs and
are vital for receiving signals from the nervous system and regulating numerous bodily
functions. pNET can be divided into functional pNET (F-pNET), which secrete hormones
leading to specific clinical syndromes, and non-functional pNET (NF-pNET), which have
no symptoms [50–52]. F-pNET are relatively rare and account for about 20%. The most
common F-pNET are insulinomas, which lead to hypoglycemia, and gastrinomas, which
lead to excessive gastrin overproduction. Other less common types include glucagonomas,
VIPomas, and somatostatinomas [53,54]. F-pNET exhibits varying degrees of malignant
potential across subtypes. Specifically, the insulinomas subtype is the most benign one
with a malignant potential of 5 to 15%, while other subtypes have a much higher potential
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ranging from 60 to 90% [55]. NF-pNET can be divided into three categories: those that do
not produce hormones; those that have hormones at levels low enough to cause symptoms;
and those that produce hormones like pancreatic polypeptide, chromogranin A, ghrelin,
calcitonin, or neurotensin that do not cause symptoms [56]. Compared with F-pNET, NF-
pNET is typically discovered later and is more prone to malignancy, often leading to poorer
prognoses [57]. These types of tumors generally remain asymptomatic until they reach a
substantial size, at which point symptoms emerge due to the mass effects of the original
tumor or its metastasis [56]. Furthermore, pNET tends to be multifocal and can metastasize
to other organs, with the liver being the primary site of metastasis, significantly impacting
the overall prognosis [58,59].

3.2. Clinical Challenges of PC Diagnosis and Treatment

Accurately diagnosing PC poses significant challenges. While screening for early
cancer precursors and the subsequent surgical removal of diseased lesions can reduce
morbidity and mortality [60], the relatively low incidence of PC among diseases makes
screening for asymptomatic individuals unfeasible [18]. Moreover, symptoms in patients
with early-stage PC are typically mild and can be mistaken for common benign diseases [61].
As a result, most PCs are diagnosed after metastasis has occurred, with only a small number
being identified at the local stage. Unfortunately, poor survival rates have not significantly
improved in recent decades [62]. Compounding this issue, the lack of knowledge about
PC and diagnostic pathways often results in patients reluctant to seek medical attention,
causing treatment delays [63]. Additionally, existing diagnostic methods exhibit a high
false positive rate and lack effectiveness [18]. The heterogeneous behavior of PC further
complicates matters, as it can be challenging to determine malignant potential accurately,
and overdiagnosis can potentially do more harm than good in mortality [60]. AI models
are efficient and fast to detect PCs; therefore, they can reduce the cost of screening and the
incidence of misdiagnosis.

The treatment of PC also presents significant challenges. Currently, the primary
treatments for PC involve surgery and chemotherapy. Nevertheless, a mere 15 to 20% of
patients are eligible for surgery, and post-surgical relapse is highly probable. Moreover, PC
tissue exhibits low blood vessel density and a fibrotic barrier, impeding the penetration of
chemotherapy drugs and leading to drug resistance [64,65]. Although targeted therapies
are available for certain PC subtypes associated with specific genetic mutations, their effec-
tiveness is constrained by high costs, drug resistance, and the unique tissue characteristics
of the pancreas [66].

Challenges in the diagnosis and treatment of PC emphasize the urgent need for
innovative assisted diagnostic technologies. AI has the potential to reduce the burden on
doctors and patients as it can automatically and accurately analyze medical images of PCs
in a short time, which will bring tremendous time and economic benefits.

4. Public Data Sources

Public data sources of pancreatic medical images are essential for medical researchers,
data scientists, and healthcare professionals. These datasets offer a rich source of visual
information related to pancreatic tissues and cancerous cells. They facilitate research in
medical imaging, machine learning, deep learning, and data science. Access to these
datasets advances AI systems for analyzing pancreatic images. Detailed information on the
currently publicized medical images of the pancreas used for research is provided below.

4.1. NIH (National Institutes of Health) [67]

This dataset comprises 82 abdominal CT scans of the pancreas. The scans have been
enhanced with contrast for better visualization and have a resolution of 512 × 512 pixels. It
includes 53 male and 27 female subjects, aged between 18 and 76 years. Among the subjects,
there are 17 healthy kidney donors and additional patients without pancreatic lesions.
To ensure accurate labeling, a medical student manually labeled each slice of CT scans,
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under the supervision of an experienced radiologist. This dataset offers an opportunity to
investigate the pancreas across different age groups, genders, and health conditions.

4.2. AbdomenCT-1K [68]

This data set proposed by Ma et al. [68] contains more than 1000 CT images from
12 medical centers for large-scale studies of the segmentation of the liver, kidney, spleen,
and pancreas to improve the generalizability of state-of-the-art models. They also establish
benchmarks for fully supervised, semi-supervised, weakly supervised, and continuous
learning segmentation and develop corresponding models for each benchmark.

4.3. BTCV (Beyond the Cranial Vault Multi-Organ Segmentation Challenge) [69]

This dataset comprises 50 abdominal CE-CT scans (30 for training and 20 for testing)
obtained from the Vanderbilt University Medical Center, with 13 organs (including the
pancreas) labeled in each scan, to perform a 13-class segmentation task. Each scan is made
up of 80 to 225 slices, each with a resolution of 512 × 512 pixels. The images were manually
labeled by the evaluator and precision was checked by a radiologist.

4.4. WORD (Whole Abdominal Organ Dataset) [70]

This dataset comprises 150 abdominal CT scans (100 for training, 20 for validation,
and 30 for testing) of 30,495 slices and is the first whole abdominal organ dataset. Each scan
is annotated with fine pixel-level annotations for 16 organs (including the pancreas) and
sparse graffiti-based annotations, a weakly supervised method that reduces labeling costs.

4.5. MSD (Medical Segmentation Decathlon) [71]

This dataset comprises 420 portal venous phase CT scans of PC patients who un-
derwent resection at Memorial Sloan Kettering Cancer Center in New York. The masses
include IPMNs, pNET, and PDAC. An abdominal radiologist manually segmented the
pancreatic parenchyma and pancreatic mass, including cysts or tumors, on each slice using
the Scout application.

As shown in Figure 3, ITK-SNAP [72] was used to visualize CT images, where the red
labels represent healthy pancreatic tissues and the green parts represent PC tissues. The task
of this dataset is to subdivide the pancreas and the PC, the latter being relatively challenging.

(a) (b) (c) (d)

Figure 3. MSD sample data pancreas_004.nii.gz: (a) 3D visualization of pancreas and PC, (b) main
view, (c) left view, and (d) top view.

4.6. Dataset of Manually Segmented Pancreatic Cystic Lesions in CT Images [73]

The dataset contains 221 CT images with 543 pancreatic cystic lesions. Pancreatic cyst
and main pancreatic duct are manually labeled in each CT image. In addition, it contains
two nnUNet [74] models, one for segmentation of the pancreas, and one for segmentation
of the cysts and main pancreatic duct.
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4.7. TCGA (The Cancer Genome Atlas) [75]

The TCGA is a public-funded project to discover the causes of cancers. It involves mul-
tiple cooperating centers that collect, process, and analyze cancer samples. TCGA provides
various types of cancer-related data, including diagnostic information, tissue, samples, and
radiological images. Radiological images, such as those available in the NIH [67], can be
found in the Cancer Imaging Archive (TCIA). Additionally, pancreatic pathological images
are accessible through the GDC portal. These resources contribute to the comprehensive
collection of data in the TCGA project, aiding researchers in understanding cancer and
its characteristics.

4.8. SEER (Surveillance, Epidemiology, and End Results Program) [41]

The SEER program is designed to collect cancer statistics for research to mitigate the
effects of cancer. A pancreatic tissue microarray (TMA) containing tumor tissue slides from
161 cases diagnosed between 1983 and 2000 has been established. Of these cases, 154 are
PDAC and 7 are pNET. The primary objective of TMA is to explore the potential prognostic
significance of PC tissue slides.

4.9. The PANORAMA Challenge (Pancreatic Cancer Diagnosis: Radiologists Meet AI) [76]

This dataset comprises CE-CT scans, including those from PDAC and non-PDAC
patients. The non-PDAC group includes both individuals with healthy pancreas and those
with non-PDAC pancreatic lesions. A separate test set of 400 scans has been prepared. This
challenge aims to assess the clinical feasibility of modern pancreas-AI solutions for PDAC
detection and diagnosis using CE-CT imaging.

4.10. LEPset [77]

The dataset is based on EUS and consists of 420 patients and 3500 images. Its task is
to classify PCs and non-PCs. Experienced physicians annotated these 3500 images with
category labels. In addition, there are 8000 unlabeled images for pretraining. Sample
images from LEPset are shown in Figure 4, with images labeled as PC or non-PC and
unlabeled data.

(a) (b) (c)

Figure 4. LEPset sample data: (a) labeled non-PC, (b) labeled PC, and (c) unlabeled image.

4.11. PAIP 2023 (Tumor Cellularity Prediction in Pancreatic Cancer) [78]

This dataset comprises 80 pancreatic pathological images (50 for training, 10 for
validation, 20 for testing) for tumor cell segmentation, with a resolution of 1024 × 1024.
They utilize tumor cellularity (TC) as a metric between 0 and 100 to measure the remaining
tumor burden in organs. The task of this dataset is to segment the tumor cell nucleus
and calculate the TC. Figure 5 shows sample images from the training set, where each
pathological image corresponds to two masks, representing the TC of the tumor cell nucleus
and the non-tumor cell nucleus, respectively.
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(a) tr_c001.png (b) tr_p001_nontumor.png (c) tr_p001_tumor.png

Figure 5. PAIP sample data: (a) a pathological image of PC, (b) nontumor cell nucleus mask, (c) tumor
cell nucleus mask (The masks were processed to be visible).

4.12. Dataset Related to Article of Grizzi et al. [79]

The dataset contains 7 patients with PDAC, 6 with chronic pancreatitis, and 5 with
normal pancreas. Each category includes 10 pathological images for each case at 20×
objective. The objective of the dataset is to accurately quantify the amount of pancreatic
collagenic extra-cellular matrix, its spatial distribution patterns, and degradation processes
by computer-assisted methods.

5. AI Tasks, Models, and Evaluation Metrics

In pancreatic image analysis, researchers mainly focused on four popular AI tasks:
segmentation, classification, object detection, and prognosis prediction. Figure 6 summa-
rizes the main AI task applications in different image modalities. To comprehensively and
objectively assess the performance of an AI task, appropriate metrics must be used. This
section introduces the metrics used in this review, which are widely recognized and used
widely. By utilizing these metrics, researchers can assess the effectiveness of various tasks
in a standardized and comparable manner.

Apply

Modalities

Computed Tomography

Endoscopic Ultrasonography

Magnetic Resonance Imaging

Pathological Images

Positron Emission Tomography

AI Tasks

Segmentation
Accurately outline and identify tumor boundaries 
within pancreatic tissue

Object Detection
Locate and identify lesions or abnormalities within 
the pancreas, and generate bounding boxes

Classification
Categorize tumors into specific types (e.g., 
adenocarcinoma, neuroendocrine tumor)

Prognosis Prediction
Use image features and clinical information to 
predict patient survival outcomes

Other Tasks
Image registration, generation, super-resolution, 
reconstruction...

Figure 6. Summary of AI tasks on different medical imaging modalities.

The workflow of AI-enabled automated PC analysis is shown in Figure 7. The medical
images and clinical data (if available) are first collected and annotated; then, the data will
be pre-processed as the input of AI models for a certain task. Next, the AI models are
trained to learn the features and generate corresponding results. Finally, AI models can be
applied to support clinical workflows after they have been assessed as reliable.
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Step 1
Data Collection and Annotation
The medical images and clinical data associated with pancreatic cancer have been collected and meticulously annotated

Step 2
Model Development
Develop machine learning or deep learning models for certain AI task

Step 3
Model Training
The AI models are trained to learn featrues from medical images and generate results

Step 4
Validation and Evaluation
The performances of the trained AI models are verified and evaluated

Step 5
Clinical Integration and Decision Support
AI models are integrated into clinical workflows to provide support for doctors

Figure 7. Flowchart of AI application in pancreatic images analysis.

5.1. Classification
5.1.1. Introduction to Classification

Image classification is a well-founded task in computer vision that aims to assign
labels or categories to the input image as a whole based on its content. This task forms
the basis for various applications. The classification of PCs is categorizing medical images
into distinct types, including PC and non-PC cases or different subtypes of PC within an
image. Classification focuses on recognizing overall patterns and characteristics, rather
than providing precise tumor boundaries. Specifically, some basic methods of classification
using AI models are shown below:

Feature extraction + machine learning Manually extracted features are often inter-
pretable, helping to understand the physical or biological characteristics behind the data,
allowing for better control over the model’s input, and reducing noise and unnecessary
information. In medical image classification, the process of feature extraction typically
involves several common methods and follows a systematic workflow. Firstly, regions of
interest (ROIs) are delineated within the images, focusing on areas relevant to the diag-
nostic task. Subsequently, various feature extraction techniques are applied to these ROIs
including shape features, which encompass parameters like height, width, perimeter, area,
and others to describe geometric properties. Texture features are extracted using methods
such as gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM),
gray-level gradient co-occurrence matrix (GLGCM), and gray-level distribution statistics
(GLDS). Additionally, the wavelet transform can also be utilized to capture multiscale tex-
ture information. Following feature extraction, a feature selection step is often performed to
reduce dimensionality and remove irrelevant or redundant features. Finally, normalization
techniques may be applied to ensure that features are on a comparable scale.

The feature extraction workflow can be seen in Figure 8, and then the normalized
data will be fed into machine learning models. Commonly used machine learning models
include supervised learning and unsupervised learning. In supervised learning, com-
mon classification models include logistic regression, decision trees, k-nearest neighbor
(KNN), support vector machines (SVMs), random forests (RFs), naïve Bayes, and so on. In
unsupervised learning, k-means clustering is usually performed on unlabeled data.

Image
Preprocessing

ROI
Extraction

Feature
Extraction

Feature
Selection / Reduction Normalization

Figure 8. Basic workflow of feature engineering in traditional machine learning based
image classification.

Steps of ROI extraction can be performed manually or by segmentation using deep
learning algorithms (the segmentation task will be described in a later section). Segmenta-
tion can be performed as a separate feature extraction step or included in an end-to-end
deep learning workflow.
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Deep features + machine learning Using deep features and machine learning for
image classification combines the powerful feature extraction capabilities of pretrained
CNNs with the robust performance of traditional machine learning algorithms. In this
approach, high-level features are extracted by pretrained CNNs from images, which are
input to machine learning algorithms. The primary advantage is the combination of deep
learning’s feature extraction strength without training from scratch and traditional algo-
rithms’ efficiency and flexibility. However, a key disadvantage is that pretrained models
might not always capture the specific characteristics of the target image dataset, poten-
tially leading to suboptimal feature representation and requiring fine-tuning or additional
domain-specific training.

End-to-end deep learning Using deep learning models like CNNs or Transformers
directly for image classification can automatically learn features from raw data without time-
consuming manual feature extraction. The evolution of image classification models has
witnessed a shift towards increasingly sophisticated architectures and techniques. Initially,
pioneering models like AlexNet [80] and VGG [81] emphasized the importance of deeper
networks for capturing intricate image features. Subsequently, ResNet [82] introduced
residual connections, enabling the training of even deeper networks while mitigating
the vanishing gradient problem. Furthermore, attention mechanisms have emerged as a
pivotal component in image classification, as evidenced by the great success of transformer-
based architectures like vision transformer (ViT) [83] and swin transformer [84]. These
models leverage self-attention mechanisms to capture global dependencies and contextual
information, allowing for more effective feature representation and classification.

Feature extraction + deep learning Some methods, while employing deep learning
techniques, do not directly input images but instead undergo a feature extraction process.
This approach allows for leveraging both the power of neural networks’ learning ability
and the explainability of manual feature extraction. However, in this case, neural networks
only act as classifiers rather than feature extractors. It is unnecessary to use a very deep
neural network that may involve additional computational costs. Most times, a shallow
one is enough.

Deep learning + machine learning There are also works combining traditional
machine learning methods with deep learning techniques. Traditional machine learning
plays a role in integrating multiple deep learning models, reducing the risk of overfitting
and capturing a broader range of patterns present in the data. Additionally, ensemble
methods can compensate for the weaknesses of individual models, leading to improved
overall performance.

5.1.2. Evaluation Metrics for Classification

Accuracy Accuracy measures the proportion of correctly classified instances out of
the total instances. It quantifies the overall correctness of the classifier’s predictions. The
Accuracy ranges from 0 to 1, where 1 indicates the predictions are all correct, while 0
indicates the model does not make any correct predictions. Accuracy is calculated by

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

where true negatives (TNs) represent instances correctly predicted as negative, true posi-
tives (TPs) represent the number of instances correctly predicted as positive, false positives
(FPs) represent the number of instances incorrectly predicted as positive when they are
negative. False negatives (FNs) represent the number of instances incorrectly predicted as
negative when they are positive.

Specificity Specificity is the probability of a negative test result and refers to the ability
of the test to correctly reject a healthy patient without disease. A positive result on a high
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specificity test close to 1 can be used to diagnose a disease, as the test rarely gives a positive
result in a healthy patient [85]. Specificity is calculated by

Specificity =
TN

TN + FP
. (2)

Precision Precision is the proportion of relevant instances among the retrieved in-
stances. Higher precision means that the algorithm returns more relevant results than
irrelevant ones. Precision is calculated by dividing the number of true positives by the total
number of elements labeled as belonging to the positive class:

Precision =
TP

TP + FP
. (3)

Recall Recall is the probability of a positive test result and refers to the ability of the
test to correctly detect a sick patient. A Recall close to 1 can be used to rule out a disease
because it rarely misdiagnoses someone with the disease [85]. Recall is calculated by

Recall =
TP

TP + FN
. (4)

Area Under Curve (AUC) AUC is based on receiver operating characteristic (ROC)
curves, which are plots of true-positive rate (TPR) versus false-positive rate (FPR) for each
threshold setting. The AUC calculates the area under the ROC curve and summarizes the
sensitivity and specificity, but does not provide information on the precision and negative
predictive value. AUC is calculated by

AUC =
∫ 1

0
TPR( f ), dFPR( f ), (5)

where TPR( f ) represents the TPR at a specific threshold f , and dFPR( f ) represents the FPR
at the same threshold f .

F1-Score The F1-score is calculated from the Precision and Recall of the test and
represents them symmetrically. The highest possible value for the F1-score is 1.0, which
indicates perfect Precision and Recall; the lowest value is 0 if Precision and Recall are 0.
The F1-score is calculated by

F1-score = 2 × Precision × Recall
Precision + Recall

. (6)

5.2. Segmentation
5.2.1. Introduction to Segmentation

Image segmentation refers to the precise outlining of the boundaries of the pancreatic
organ or PC. With accurate pancreas and PC boundaries, doctors can get the size, shape,
location, and other features of the PC for quick diagnosis and treatment planning. Instance
segmentation and semantic segmentation are the two basic branches of the segmentation
task. Semantic segmentation categorizes each pixel in an image into a predefined class
without distinguishing different instances of the same class. Further, instance segmentation
not only categorizes pixels but also distinguishes between individual object instances of the
same class, assigning unique labels to each instance. Several popular segmentation topics
and methods are as follows:

Superpixel extraction Early-stage pancreas and PC segmentation before the pro-
posal of FCN relies on superpixel extraction. Superpixel extraction in medical image
segmentation involves grouping pixels with similar characteristics to form cohesive re-
gions. Algorithms like simple linear iterative clustering (SLIC) or quickshift partition the
image into superpixels based on color, intensity, or texture similarities, followed by feature
extraction and segmentation to assign labels to each region.
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FCN/UNet-based methods for 2D segmentation Fully convolutional neural networks
(FCNs) [86] revolutionized segmentation by enabling end-to-end learning, allowing pixel-
wise predictions directly from input images and offering greater flexibility, efficiency, and
performance in image semantic segmentation tasks compared to superpixel selection. Based
on this architecture, UNet [87] stands out for its U-shaped design, efficiently capturing both
high-level context and precise localization information. A lot of UNet’s variants like Atten-
tion UNet [88], UNet++ [89], ResUNet++ [90], Channel UNet [91], UNet3+ [92] and so on
are proposed aiming at refining segmentation accuracy and addressing specific challenges.

FCN/UNet-based methods for 3D segmentation Three-dimensional (3D) segmen-
tation in medical imaging offers enhanced accuracy and comprehensive visualization by
considering the entire volume of the image, facilitating precise treatment planning, quanti-
tative analysis, and time efficiency in clinical practice. Unlike its 2D counterpart, which
processes images as two-dimensional matrices, 3D convolution considers the depth, height,
and width of the input volume, using three-dimensional kernels to capture spatial depen-
dencies along all three axes. This extension facilitates the modeling of complex volumetric
structures and temporal dynamics, making 3D convolution well-suited for tasks involving
volumetric medical imaging, video processing, and any application where understanding
three-dimensional spatial relationships is essential for accurate analysis. Models like 3D
U-Net [93], S3D-UNet [94], and V-Net [95] are advanced 3D CNN architectures designed to
segment volumetric medical image.

Transformers for 2D medical image segmentation While FCN/UNet-based ap-
proaches have been highly successful, their convolutional layers suffer from flaws in access-
ing global and remote long-range semantic information. Thus, more and more attention is
paid to the success of ViT in visual tasks. Transformers can offer significant advantages in
2D medical segmentation for capturing global context information, handling variable input
sizes, leveraging attention mechanisms for focusing on relevant features, and utilizing
pretrained models for transfer learning, ultimately improving segmentation accuracy and
performance in medical imaging tasks. Transformer-based UNet variants including pure
Transformer models and hybrid models of Transformer and CNNs. Typical models like
TransUNet [96], Swin-UNet [97], Transformer-UNet [98], and TransAttUNet [99] show
great segmentation performance on a series of medical image segmentation tasks. Figure 9
shows the structure of TransUNet, a representative model that merits both Transformers
and UNet. This framework utilizes a CNN-Transformer hybrid encoder to generate the
feature map, and then a cascaded upsampler decodes the hidden feature and outputs the
segmentation results.

Hidden Feature

Linear Projection

CNN

Transformer Layer

Transformer Layer

(n = 12)

Hidden Feature

Input Image

...

(D, H/16, W/16)

reshape

(512, H/16, W/16)

Output Result

1/8

1/4

1/2 (16, H, W)

(64, H/2, W/2)

(128, H/4, W/4)

(256, H/8, W/8)

(n_patch, D)

Conv3x3, ReLU

Upsample

Segmentation head

Downsample

Feature concatenation

Figure 9. TransUNet architecture.
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Transformers for 3D medical image segmentation The volume medical image seg-
mentation task can also be redesigned as sequence-to-sequence prediction. The transformer
operates on a sequence of input embeddings of a 3D input volume x ∈ RH×W×D×C with
resolution (H, W, D) and C input channels by dividing it into flattened uniform nonover-

lapping patches xv ∈ RN×(P3.C), where (P, P, P) denotes the resolution of each patch and
N = (H × W × D)/P3 is the length of the sequence. Figure 10 shows the structure of 3D
TransUNet [100], an extension of TransUNet for 3D image segmentation.
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Figure 10. 3D TransUNet architecture.

Graph-based methods for medical image segmentation Graph-based methods utilize
the concept of graph theory to represent the image as a graph, where pixels or voxels are
nodes, and their relationships are represented by edges. Graph neural networks like graph
convolution networks (GCNs) [101], graph attention networks (GATs) [102], and graph
isomorphism networks (GINs) [103] can be used to process such graph representation.

Instance Segmentation Instance segmentation algorithms can be divided into three
main branches: two-stage methods like mask R-CNN [104] and cascade mask R-CNN [105]
employ a two-step process involving region proposal generation followed by mask re-
finement; one-stage methods like SOLO [106] and SOLOv2 [107] directly predict object
categories and segmentation masks without separate proposal steps, offering efficiency
at the cost of some accuracy; emerging query-based approaches, such as QueryInst [108],
formulate instance segmentation as a query-driven interaction problem.

5.2.2. Evaluation Metrics for Segmentation

Dice Similarity Coefficient (DSC) DSC indicates the ratio of overlapping pixels
between the prediction and ground truth masks to the total number of pixels in the two
masks. The coefficient ranges from 0 to 1, where 1 indicates a perfect match between the
predicted and ground truth masks, and 0 indicates no overlap. DSC is calculated by

DSC =
2 × |A ∩ B|
|A|+ |B| , (7)

where A represents the predicted segmentation mask or set of pixels, and B represents the
ground truth segmentation mask or set of pixels.

Intersection over Union IoU, also known as the Jaccard Index, measures the overlap
between a predicted region and a ground truth region. The IoU ranges from 0 to 1, where
1 indicates a perfect overlap between the masks, and 0 indicates no intersection. IoU is
calculated by

IoU =
|A ∩ B|
|A ∪ B| . (8)
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Based on IoU, mean IoU (mIoU) is calculated as the average of the IoUs for each
pixel class:

mIoU =
1
N

N

∑
i=1

IoUi, (9)

where N is the number of pixel classes. Instance segmentation tasks typically use mIoU to
evaluate performance, averaging segmentation results across multiple categories.

Other Metrics In addition to DSC and IoU, there are also distance-based metrics such
as Hausdorff distance (HD) [109] and normalized surface distance (NSD) [110]. These
metrics consider the distances between two sets of shapes that quantify the difference
between the segmentation result and the true label. The larger the distance, the greater the
difference between the two shapes, and the worse the performance of the models.

The HD is calculated by

H(A, B) = max(h(A, B), h(B, A)),
h(A, B) = max

a∈A
min
b∈B

∥a − b∥, (10)

where H(A, B) is the HD between A and B, h(A, B) is the directed HD, and ∥ · ∥ is some
underlying norm on the points of A and B.

The NSD is calculated by

NSD =
|Si ∩ B(τ)

j |+ |Sj ∩ B(τ)
i |

|Si|+ |Sj|
, (11)

where τ is the tolerance, Si and Sj are surfaces, Bi and Bj are border regions, i is the
prediction, and j is the reference.

Moreover, Accuracy, Specificity, Recall, Precision, AUC, and F1-score can also be used
to evaluate segmentation tasks, as discussed in Section 5.1. Unlike classification, these
metrics evaluate the performance of the segmentation models in terms of their prediction
at each pixel point.

5.3. Object Detection
5.3.1. Introduction to Object Detection

Object detection refers to the classification and localization of objects in an image,
which involves assigning labels to each detected object and providing a bounding box
around the object. By accurately detecting and localizing objects in an image, object detec-
tion algorithms enable machines to effectively understand and interact with
visual information.

2D Object detection Two-dimensional (2D) object detection can be categorized into
two main approaches: single-stage and two-stage methods. Single-stage methods, such as
and SSD [111] and the YOLO (you only look once) series [112–119], perform object detection
in a single step. They directly predict object bounding boxes and class probabilities from
the entire image using a unified network architecture. While these methods are faster,
they may sacrifice some accuracy compared to two-stage methods. Two-stage methods,
like R-CNN [120], fast-RCNN [121], and faster R-CNN [104], divide the object detection
process into region proposal generation stage and object classification stage. In the first
stage, region proposal networks generate potential object bounding boxes, which are then
refined and classified in the second stage. These methods typically achieve higher accuracy
but require more computational resources. Transformer-based methods like DETR [122]
can capture global context and long-range dependencies in images more effectively. This
approach enables accurate object detection by attending to relevant image regions and
preserving spatial information through positional encodings.

3D object detection Three-dimensional (3D) object detection is also beneficial for
clinical practice. Volume of interest (VOI) extraction is a crucial preprocessing step that
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enables tasks like organ segmentation and tumor classification by localizing relevant
structures, reducing computational burden, and enhancing accuracy [123]. The main
methods for 3D bounding box detection include generating from 2D box detection [124],
generating from coarse segmentation [125], reinforcement learning [126], 3D detection
models like using 3D region proposal network [127] and so on.

5.3.2. Evaluation Metrics for Object Detection

IoU In addition to segmentation, IoU could also be used to assess the performance of
object detection. In formula

IoU =
|A ∩ B|
|A ∪ B| , (12)

A and B represent the predicted and ground truth bounding boxes, respectively.
mAP mAP is the mean value of Average Precision (AP). The AP involves computing

the Precision and Recall values for each class and then integrating Precision to Recall.
The integration is performed using the area under the Precision–Recall curve. AP is
calculated by

AP =
1
n

n

∑
k=1

(P(k)× rel(k)), (13)

where n represents the total number of relevant items in the retrieved set, P(k) represents
the Precision at cut-off k, rel(k) is an indicator function equaling 1 if the item at rank(k) is
relevant, and 0 otherwise. mAP is calculated by

mAP =
1
C

C

∑
i=1

APi, (14)

where C represents the total number of object classes, APi represents the AP for class
i. mAP@0.5 measures the mAP when the intersection over union (IoU) threshold for
considering a detection as a true positive is 0.5. mAP@0.5:0.95 measures the mAP averaged
over different IoU thresholds ranging from 0.5 to 0.95, typically in increments of 0.05.

Other Metrics If the IoU is greater than a set threshold (e.g., 0.5), the predicted
bounding box can be treated as a correct detection. The metrics mentioned by Section 5.1
(accuracy, specificity, recall, precision, AUC, and F1-score) can be obtained from the number
of correctly predicted bounding boxes versus the number of incorrectly predicted bounding
boxes. IoU greater than the threshold is classified as TP, IoU less than the threshold as FP,
and IoU of 0 as FN.

5.4. Prognosis Prediction
5.4.1. Introduction to Prognosis Prediction

The prognosis prediction for PC patients integrates medical images and clinical data
to forecast the survival period of individuals. This predictive capability assists doctors in
making informed prognosis decisions for their patients.

Prognosis prediction is to predict outcomes for PC patients after undergoing surgery,
such as predicting whether or not the patient will survive after some time, or for overall
survival (OS) time. The predicted results will usually be compared with the real results
for consistency, thus evaluating the model performance. Basic methods for prediction of
prognosis typically include machine learning algorithms such as least absolute shrinkage
and selection operator (LASSO) regression, SVM, or more advanced techniques such as
random forests (RF) or gradient enhancement. These methods leverage the relationship
between input features, such as medical imaging characteristics and clinical variables, and
the target variable, such as survival time, to learn predictive models to accurately forecast
patient outcomes. Features like tumor size, shape, and texture are traditionally manually
extracted from images to inform prognosis models. With the advent of deep learning,
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automatic feature extraction has gained traction. CNNs autonomously learn discriminative
features directly from images, eliminating the need for manual feature engineering.

5.4.2. Evaluation Metrics for Prognosis Prediction

Concordance Index The C-index is used to assess the predictive model accuracy in
survival analysis. It measures how well a model ranks the relative order of survival times
for different individuals. The C-index ranges from 0 to 1, with higher values indicating
better predictive accuracy. A C-index of 1 indicates perfect concordance, where the model
consistently ranks survival times correctly. A C-index of 0.5 represents a random prediction,
indicating that the model’s predictions are not informative. C-index is calculated by

C-index =
NC
NT

, (15)

where NC represents the number of concordant pairs, and NT represents the number of all
evaluable pairs. Concordant pairs are pairs of individuals where the predicted survival
times have the same relative order as the actual survival times. Comparable pairs are pairs
where a meaningful comparison can be made, excluding tied or censored survival times.

Other Metrics Prognosis prediction also includes predicting whether a patient will die
and whether PC will develop metastasis within a period after treatment. In this case, the
previously mentioned metrics Accuracy, Specificity, Precision, Recall, AUC, and F1-score
could evaluate the AI models on prognosis prediction task as well.

5.5. Other Tasks

In addition to the mentioned tasks, there are several other common AI tasks in medical
image analysis that could potentially aid in the diagnosis and treatment of PC. These
include registration as well as various low-level visual tasks.

Image registration involves aligning multiple images from different sources or times,
aiding in tracking disease progression or integrating data from different imaging modalities.
Image generation encompasses techniques for creating new images based on existing ones,
such as generating synthetic images to augment training data or simulating different
imaging scenarios for educational purposes. Super-resolution techniques enhance image
resolution, enabling the detection of finer details in pancreatic imaging and aiding in
the identification of smaller lesions or abnormalities. Denoising methods remove noise
from images, improving clarity, and facilitating the identification of relevant features in
pancreatic images, especially against a noisy background. Reconstruction involves creating
complete images from partial or incomplete data, such as reconstructing 3D images from
2D scans. The Medical Visual Question Answering (MedVQA) task combines computer
vision and natural language processing (NLP) by analyzing input medical images and
related questions and outputting answers to inform medical diagnosis and treatment. The
above-mentioned tasks utilize a variety of AIs that can help improve the quality of imaging
data and the accuracy of automated analysis, helping physicians diagnose and treat PCs
more effectively.

6. Computed Tomography (CT)
6.1. Introduction to CT

CT, also known as computed axial tomography (CAT), is a noninvasive imaging tech-
nique that rapidly produces three-dimensional imaging of the inside of the body. It is the
most widely used radiologic imaging method and has become a standard. Compared to
conventional radiography, CT offers higher contrast. The advent of CT revolutionized the
field of medical imaging, becoming an indispensable tool for diagnosis and treatment [128].
CE-CT uses iodinated contrast agents to increase the visibility of blood vessels, distinguish-
ing them from their surroundings. This approach increases clarity and provides more detail
to better analyze anatomy and potential abnormalities. However, iodinated contrast agents
also have side effects, such as causing nephropathy [129].
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6.2. Classification

Feature extraction + machine learning Li et al. [130] used six methods for feature
extraction, as shown in Table 3, and the LASSO algorithm for feature selection, and then
applied the EL-SVM learner to classify normal pancreas, early-stage (stage I and stage
II), stage III, and stage IV of PC. Chen et al. [131] trained an XGBoost [132] model to
classify patches as cancerous or noncancerous. Patients were classified as either PDAC
or non-PDAC based on the proportion of patches classified as cancerous. Mukherjee
et al. [133] conducted feature extraction, normalization, and reduction, and trained four
independent ML classifiers known as KNN, SVM, RF, and XGBoost to recognize PDAC at
the prediagnostic stage, which achieved high accuracy.

Table 3. Features extracted by six methods in [130].

Methods Feature Name

Shape height, width, perimeter, area, complexity, rectangularity, elongation,
equivalent area radius

GLCM mean and standard deviation of energy, entropy, moment of inertia,
and correlation

GLRLM
short run emphasis, long run emphasis, gray-level nonuniformity, run
percentage, run-length nonuniformity, low gray-level run emphasis,

high-gray level run emphasis

GLGCM

small grads dominance, big grads dominance, gray asymmetry, grads
asymmetry, energy, gray mean, grads mean, gray variance, grads
variance, correlation, gray entropy, grads entropy, entropy inertia,

differ moment

GLDS mean, contrast, angular second moment, entropy

Wavelet transform

End-to-end deep learning Liu et al. [11] used the VGG model to differentiate PC
tissue from noncancerous pancreatic tissue. Xia et al. [134] proposed a deep classification
model that combined UNet with Anatomy-aware Hybrid Transformers using a single-phase
noncontrast CT to facilitate more accurate, safe, and low-cost screening for distinguishing
between PDAC, other abnormalities, and normal pancreas. Cao et al. [135] introduced
PC detection with artificial intelligence (PANDA) method to detect and classify pancreatic
lesions based on the lesion segmentation results of nnUNet. CNNs with a classification
head were used to classify PDAC, pNET, SPT, IPMN, MCN, chronic pancreatitis, SCN, etc.
Segmentation and classification models are included in an end-to-end scheme.

Feature extraction + deep learning Vaiyapuri et al. [136] proposed an IDLDMS-PTC
technique to examine the CT images for the existence of pancreatic tumors. The proposed
technique comprises several sub-processes: GF-based pre-processing, EPO-MLT-based
segmentation, MobileNet-based feature extraction, AE-based classification, and MLO-
based parameter optimization. Huy et al. [137] used Densenet to distinguish cancerous
tumors from benign tumors in CT pancreatic images.

Deep learning + machine learning To classify pancreatic SCNs and MCNs, Yang et al. [138]
applied a multichannel-multiclassifier-RF-ResNet (DNN-MMRF-ResNet). SVM, KNN, and
Bayes classifiers were used after the residual block, and then the final classification was
finished by an RF classifier. Bakasa et al. [139] utilized Inception V3, VGG16, and ResNet34
as weak learners in a stacking ensemble, where their first-level predictions formed the
input for XGBoost that performed the final pancreas cancer classification.

Table 4 shows the comparison of AI models in CT pancreatic images for the classifica-
tion task.
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Table 4. Summary of AI methods in CT images for classification task.

Year Reference Model Dataset Sample Size Performance

2020 [130] LASSO regression and
EL-SVM learner A private dataset 168

AUC = 0.7308 (normal–early
stage), 0.6587 (normal–stage III),

0.7333 (normal–stage IV)

2021 [131] XGBoost A private dataset, MSD
and NIH

27,235, 5715, and
7054

AUC = 0.97 (private test set),
0.83, and 0.89 (public test set)

2022 [133] KNN, SVM, RF and
XGBoost

A private dataset and
NIH 596 and 82 AUC = 0.95, 0.98, 0.95, and 0.96

2020 [11] VGG A private dataset, MSD
and NIH

14,780, 4849, and
1427

Accuracy = 0.986, 0.989 (private
test set), and 0.832 (MSD and

NIH test set)

2021 [134]
UNet with

Anatomy-aware Hybrid
Transformers

A private dataset 1627 Recall = 0.952, Specificity = 0.958

2023 [135] PANDA Five private dataset 3208, 786, 5337,
18,654, and 4815

Specificity = 0.999,
Recall = 0.929,

AUC = 0.986–0.996

2022 [136] IDLDMS-PTC A private dataset 500

Accuracy = 0.9935,
Specificity = 0.9884,

Recall = 0.9935,
F1-score = 0.9948

2023 [137] DenseNet NIH and MSD 18,942 and 15,000
Accuracy = 0.974,
Specificity = 0.966,

Recall = 0.983

2022 [138] DNN-MMRF-ResNet A private dataset 110

Precision = 0.9387,
Recall = 0.9136,

Specificity = 0.9380,
Accuracy = 0.9269

2023 [139] Stacking ensemble NIH 80 Accuracy = 0.988

6.3. Segmentation

Superpixel extraction Roth et al. [140] extracted superpixels from the abdominal
region are extracted via SLIC. Initial probability response maps are generated using a
two-level cascade of RF classifiers, retaining superpixels with probabilities above 0.5,
followed by CNN sampling bounding boxes at various scales and nonrigid deformations
for refined pancreas region identification. Roth et al. [67] introduced a probabilistic bottom-
up approach to segment the pancreas in abdominal CT scans, employing multilevel deep
CNNs. Various ConvNets variations are evaluated for hierarchical classification on image
patches and regions (superpixels), with post-processing using structured predictions.

FCN/UNet-based methods for 2D segmentation Heinrich and Oktay [141] developed
BRIEFnet, which utilized binary sparse convolutions in CNNs to reduce memory cost and
improve segmentation performance. Zhou et al. [142] utilized pretrained FCN-8s incorpo-
rated with deeply-supervised nets (DSN) [143] to develop a coarse-to-fine segmentation
algorithm. The model obtained a reasonable segmentation of pancreatic cysts. Lu et al. [144]
proposed a Ringed Residual U-Net using the ring residual module as well as the attention
mechanism. Boers et al. [145] implemented the interactive method iFCN and introduced
iUNet, an interactive version of the U-net method, which is fully trained for optimal initial
segmentation and additionally fine-tuned on user-generated scribbles in interactive mode.
Jiang et al. [146] proposed DLU-Net with deformable convolution modules to strengthen
the ability to model the target edge, and the Bi-Directional Convolutional Long-Short Term
Memory (BConvLSTM) was utilized to merge the features of different scales. Li et al. [147]
used the skip network, residual network, and multiscale residual network strategies to
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efficiently address over- and under-segmentation issues through cross-domain connections
and multiscale convolution operations, enhancing accuracy in pancreas shape learning. Li
et al. [148] proposed a Window Attention Upsample (WAU) for upsampling, consisting of
an Attention Decoder (AD) and a bilinear upsample. A window attention scheme is used
to reduce computation by restricting computation in local windows instead of the global
range. Paithane and Kakarwal [149] introduced a 12-layer LMNS-net with 4 convolution
layers, where a lightweight multiscale block dropped the unused information. Juwita
et al. [150] proposed M3BUNet, which fused MobileNet and UNet and was equipped with
Mean-Max attention. In addition, they utilized a coarse-to-fine segmentation process to
improve performance.

Some methods first locate the organ of interest, such as the pancreas, and then identify
any abnormalities or lesions within it. This two-step process involves initially segmenting
the organ from surrounding structures and then focusing on regions of interest within
the organ for further analysis. Zhou et al. [151] proposed DBFE-Net with two branches.
DB-Net is used to extract semantic and fine-grained features for pancreas segmentation
with a coarse-to-fine strategy, and then FE-Net is used to extract fine-grained features with
higher contrast for tumor segmentation in the pancreas region.

Some works focus on utilizing spiral transformation to map 3D images onto 2D planes
while preserving spatial relationships, facilitating effective 3D contextual information
utilization in a 2D model. Chen et al. [152] applied spiral transformation for data augmen-
tation and incorporated a transformation-weight-corrected module based on Res-UNet
[153]. This design addressed small sample size issues and ensured uniform 3D segmenta-
tion and rebuilding constraints, overcoming nonunique 3D results from uniform sampling.

FCN/UNet-based methods for 3D segmentation Roth et al. [154] investigated the
3D U-Net of two types of pancreas segmentation, one with concatenation and one with
summation skip connections. Chen et al. [155] introduced a new bias-dice loss function for
improved efficiency in 3D coarse segmentation, utilizes a dimension adaptation module
(DAM) to incorporate 3D information into 2D networks, and proposes a fusion decision
module and parallel training strategy to integrate multisource feature cues from sub-
networks for final predictions. Zhao et al. [156] proposed a two-stage framework that
utilized a 3D UNet to provide candidate regions in the first stage, and another 3D UNet
was trained to obtain the final results based on these candidates in the second stage.
Zhang et al. [157] proposed a dynamic on-demand network (DoDNet) with a dynamic
segmentation head, addressing the partially labeled issue in medical images and being
applied to multiple tumors. They also proposed a large-scale partially labeled dataset
MOTS for pretraining models. Zhang et al. [158] developed the scale-transferrable feature
fusion module (STFFM) and prior propagation module (PPM) modules to simplify FCNs.
STFFM utilized the scale-transferrable operation to learn rich fusion features, and PPM
explored informative spatial priors by dynamically adapting the spatial priors to input and
feature maps.

nnUNet Isensee et al. [74,159] introduced the no-new-Net (nnUNet), a robust and
self-adapting framework based on 2D and 3D vanilla U-Nets without using various exten-
sion plugins (residual connections, Dense connections, and various attention mechanisms),
which can automatically adapt architectures to image geometry. In addition, they de-
fined steps for nnUNet: pre-processing, training, inference, and potential post-processing.
Yao et al. [160] employed nnUNet for IPMN segmentation and achieved a better DSC
than the previous studies. In recent years, nnUNet has achieved remarkable success and
widespread application in medical image segmentation competitions, prompting a rethink-
ing of the task. Effective preprocessing, post-processing, training, and inference strategies
may be more important than complex network architectures.

Transformers for 2D medical image segmentation Sha et al. [98] proposed Transformer-
Unet, which combined Transformer and UNet by replacing Transformer modules in raw
images with feature maps in UNet. Huang et al. [161] introduced Medical Image Segmenta-
tion tranSFormer (MISSFormer), a hierarchical encoder-decoder network. They redesigned
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the feed-forward network with the Enhanced Transformer Block and used the Enhanced
Transformer Context Bridge to extract long-range dependencies and local context of multi-
scale features. Chen et al. [96] proposed TransUNet that combined Transformers and UNet.
The Transformer encoders tokenized image patches from the CNN feature map to obtain
global contexts, and these encoded features were combined with high-resolution CNN
feature maps for precise localization. Cao et al. [97] introduced Swin-UNet, a UNet-like
pure Transformer that uses a hierarchical Swin Transformer encoder to extract context
features and a symmetric decoder to restore spatial resolution. Dai et al. [162] put forward
a two-stage Trans-Deformer network (TD-Net), with a 2D UNet for coarse segmentation
and ViT for fine segmentation. In this framework, the multi-input module was designed to
focus on high-frequency texture information, and the scale interactive fusion (SIF) module
was designed to combine local and global features. Rahman et al. [163] proposed a medical
image segmentation transformer (MIST) using convolutional attention mixing (CAM) to
capture local contexts of pixels in multimodal dimensions.

Transformers for 3D medical image segmentation Zhou et al. [164] proposed not-
another transFormer (nnFormer) that combined interleaved convolution and self-attention
operations and utilized local and global volume-based self-attention mechanisms. More-
over, they replaced the traditional concatenation or summation in skip connections with
skip attention in UNet-like architecture. Hatamizadeh et al. [165] put forward UNet
Transformers (UNETR) utilizing a skip-connected transformer encoder to capture global
multiscale information. Tang et al. [166] introduced Swin UNETR, a self-supervised
framework, which utilized an encoder to extract features from multiple resolutions and
was pretrained on 5050 public CT images. The model can also be applied to various
proxy tasks after fine-tuning. Chen et al. [100] extended 2D TransUNet to 3D TransUNet,
which tokenized image patches from a CNN feature map using a Transformer encoder
and the Transformer decoder adaptively refined candidate regions by employing cross-
attention between candidate proposals and U-Net features. Qu et al. [167] introduced a
transformer-guided progressive fusion network (TGPFN), which supplemented long-range
dependencies of convolutions by global representation captured by the transformer.

Graph-based methods for medical image segmentation Guo et al. [168] proposed a
layered optimal graph image segmentation of multiple objects and surfaces (Deep LOGIS-
MOS) method utilizing a UNet, trained on adjacent 2D patches centered at the tumor to
provide contextual segmentation, refined by Gaussian Mixture Model (GMM) and morpho-
logical operations, followed by segmentation graph construction using UNet probability
maps and a max-flow algorithm for globally optimal segmentation. Soberanis et al. [169]
improved UNet based on uncertainty analysis and GCNs, which trained a GCN to solve a
semi-supervised graph learning problem about the uncertainty levels of a particular input
volume. Hu et al. [170] proposed a distance-based saliency-aware model (DSD-ASPP-Net),
a coarse-to-fine framework that trained a Dense Atrous Spatial Pyramid Pooling (DenseA-
SPP) model to learn location and probability map of the pancreas for coarse stage and
saliency-aware modules for fine stage. Zhao et al. [171] introduced a holistic segmentation-
mesh-classification network (SMCN) that combined geometry and location information and
a graph-based residual convolutional network (Graph-ResNet) with nodes fused the infor-
mation of the mesh model and feature vectors of the segmentation network. Liu et al. [172]
developed a graph-enhanced pancreas segmentation network (GEPS-Net), which added a
graph enhancement module to UNet to extract the spatial relationship information.

Neural architecture search (NAS) NAS optimizes segmentation models by automati-
cally finding the best network structures for improved performance. It adjusts parameters
like depth and width to suit specific tasks and datasets, overcoming limitations of man-
ual design and enhancing model accuracy and efficiency. Zhu et al. [173] employed a
NAS for volumetric medical image segmentation (V-NAS), which could choose 2D, 3D, or
Pseudo-3D (P3D) convolutions at each layer automatically. He et al. [174] proposed the
Differentiable Network Topology Search (DiNTS) scheme, including a topology-guaranteed
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discretization algorithm and a discretization-aware topology loss. Moreover, DiNTS could
search 3D networks under different GPU memories and significantly reduce training time.

Utilizing the power of large models Large models, also known as foundation models,
refer to deep learning models with extensive parameters and complex computational
architectures, which can offer improved performance by capturing intricate patterns and
relationships in data, enabling enhanced representation learning, flexibility across diverse
domains, state-of-the-art results, and scalable handling of growing datasets and complex
tasks. He et al. [175] found that SAM showed the lowest segmentation performance on
the pancreas over 10 different organs (brain, chest, lung, liver, pancreas, prostate, bowel,
skin, heart, and breast), and concluded that SAM is not as accurate as dataset specific deep
learning algorithms in medical images. Therefore, the road to zero-shot segmentation for
the pancreas and PC is still long. Mazurowski et al. [176]’s experimental datasets on SAM
included MSD. Huang et al. [177] test the SAM on a built large medical dataset using
different modes containing 18 modalities, 84 objects, 1050K 2D images, and 6033 masks.
The sources of this collected dataset included AbdomenCT-1K related to the pancreas,
promoting the research on zero-shot segmentation. Liu et al. [178,179] proposed the CLIP-
Driven Universal Model based on Contrastive Language-Image Pretraining (CLIP) [180].
Using transfer learning on 3410 CT scans, they trained a universal model to capture
anatomical relationships.

Federated learning Federated learning is one of the machine learning methods and
allows model training on decentralized devices or servers, preserving local data samples
while protecting user privacy and data security. Models can be learned from different data
sources without sharing the original data, making it particularly suitable for applications in
healthcare. Knolle et al. [181] proposed a shallow and U-Net-like framework MoNet based
on repeated dilated convolutions with decreasing dilation rates. This framework reduces
inference time and memory compared to UNet variants and is suitable for federated
learning. Wang et al. [182] put forward the conditional distillation federated learning
(ConDistFL) framework, which combined federated learning with knowledge distillation.
This framework was trained on images of various organs and could extract knowledge of
unlabeled tumors from labeled ones. Their study also increased the stability and reduced
the training time.

Reinforcement learning Reinforcement learning maximizes task rewards by training
agents to observe images and take actions, and can be applied to a variety of computer vi-
sion tasks such as object detection, image segmentation, and behavior recognition. The key
to this approach lies in designing appropriate state space, action space, and reward func-
tions for effective learning strategies. Man et al. [183] introduces a deep Q network (DQN)
driven approach combined with a deformable U-Net architecture to address challenges
in pancreas segmentation in medical image analysis, achieving accurate segmentation by
interacting with contextual information and capturing geometry-aware features.

Instance Segmentation Dogan et al. [184] combined semantic segmentation and
instance segmentation and proposed a two-phase approach. The first stage is Pancreas
Localization, detecting the rough pancreas position on 2D CT slices by adopting the Mask
R-CNN model. The second phase, Pancreas Segmentation, used the 3D U-Net model to
refine the candidate pancreas region on 2D sub-CT slices.

Figure 11 shows the average DSC of the pancreas and PCs for AI models in the MSD
dataset from 2018 to 2024. AI models are sorted chronologically from left to right. While
the overall performances improve over time, they still lag behind other organs.

Figure 12 shows the DSC of the pancreas for the AI models on the BTCV dataset
from 2017 to 2024. AI models are sorted in chronological order from left to right. 3D
segmentation models showed superior results.
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Figure 11. Summary of AI models’ segmentation performance for pancreas and PCs on MSD.
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Figure 12. Summary of AI models’ segmentation performance for pancreas on BTCV.

Table 5 shows the comparison of AI models in CT pancreatic images for the segmenta-
tion task.

Table 5. Summary of AI methods in CT images for segmentation task.

Year Reference Model Dataset Sample Size Performance

2015 [140] SLIC NIH 82 DSC = 0.81

2015 [67] Probabilistic bottom-up
approach NIH 82 DSC = 0.805

2017 [141] BRIEFnet BTCV 30 DSC = 0.645

2017 [142] FCN-8s with DSN A private dataset 131 DSC = 0.6344 ± 0.2771

2019 [144] Ringed Residual U-Net NIH 82 DSC = 0.8832 ± 0.0284

2020 [145] iUNet
A combination of TCIA

and BTCV, and a
private dataset

90 and 1905 DSC = 0.87

2020 [146] DLU-Net MSD and a private
dataset 281 and 126 DSC = 0.9117 and 0.9094,

Accuracy = 0.9725 and 0.9743

2020 [147] Custom segmentation
network NIH 82 DSC = 0.8757 ± 0.0326

2022 [148] WAU BTCV 30 DSC = 0.6601
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Table 5. Cont.

Year Reference Model Dataset Sample Size Performance

2023 [149] LMNS-net NIH 82
DSC = 0.8868, IoU = 0.9882,

Precision = 0.6822,
Recall = 0.9866

2024 [150] M3BUNet NIH and MSD 82 and 281 DSC = 0.8952 and 0.8860,
IoU = 0.8116 and 0.7990

2023 [151] DBFE-Net Two private datasets 116 and 42 Precision = 0.6573 (PCs), 0.8907
(abnormal) and 0.9147 (normal)

2023 [152] Spiral-ResUNet MSD 281 DSC = 0.6662

2018 [154] 3D UNet A private dataset 147 DSC = 0.897 ± 0.038

2019 [155] CNN with Bias-dice
loss function NIH 82 DSC = 0.8522

2019 [156] 3D UNet-based
two-stage framework NIH 82 DSC = 0.8599

2021 [157] DoDNet MSD 281 DSC = 0.7155, HD = 11.70

2021 [158] CNNs with STFFM and
PPM modules NIH and MSD 82 and 281 DSC = 0.8490 and 0.8556

2018 [159] nnUNet MSD 281 DSC = 0.659

2020 [160] nnUNet A private dataset 61 DSC = 0.73

2021 [98] Transformer-UNet NIH 82 mIoU = 0.8301, DSC = 0.7966

2021 [161] MISSFormer BTCV 30 DSC = 0.6567

2021 [96] TransUNet BTCV 30 DSC = 0.5586

2022 [97] Swin-UNet BTCV 30 DSC = 0.5658

2023 [162] TD-Net NIH and MSD 82 and 281 DSC = 0.8989 and 0.9122

2024 [163] MIST BTCV 30 DSC = 0.7243

2021 [164] nnFormer BTCV 30 DSC = 0.8335

2022 [165] UNETR BTCV 30 DSC = 0.799

2022 [166] Swin UNETR BTCV and MSD 30 and 281 DSC = 0.897 and 0.7071

2023 [100] 3D TransUNet BTCV 30 DSC = 0.8269

2023 [167] TGPFN Three private datasets
and MSD

313, 53, 50, and
420

DSC = 0.8051, 0.6717, 0.6925,
and 0.4386

2018 [168] Deep LOGISMOS A private dataset 50 DSC = 0.823 ± 0.078

2020 [169]
Improved UNet based
on uncertainty analysis

and GCNs
NIH 82 DSC = 0.778 ± 0.063

2020 [170] DSD-ASPP-Net NIH 82 DSC = 0.8549 ± 0.0477

2021 [171] SMCN with
Graph-ResNet A private dataset 661 DSC = 0.738 (PDAC)

2022 [172] GEPS-Net NIH 82
DSC = 0.8226 ± 0.0648,
IoU = 0.7036 ± 0.0887,

HD = 7.88 ± 9.29

2019 [173] V-NAS NIH and MSD 82 and 281 DSC = 0.8515 and 0.5886

2021 [174] DiNTS MSD 281 DSC = 0.6819, NSD = 0.8608

2023 [175] SAM MSD 281 DSC = 0.0547 (box)

2024 [177] SAM AbdomenCT-1K 1000 DSC = 0.7686 (box)
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Table 5. Cont.

Year Reference Model Dataset Sample Size Performance

2024 [179] CLIP-Driven Universal
Model MSD 281 DSC = 0.7259, NSD = 0.8976

2021 [181] MoNet MSD 281 DSC = 0.74 ± 0.11

2023 [182] ConDistFL MSD 281 DSC = 0.5756

2019 [183] DQN NIH 82 DSC = 0.8692 ± 0.0492

2021 [184] Mask-RCNN NIH 82 DSC = 0.8615 ± 0.0445,
IoU = 0.7593 ± 0.646

6.4. Object Detection

There are also several object detection works in CT images. Zhang et al. [185] proposed
a pancreatic tumor detection framework that incorporated augmented feature pyramid
networks, self-adaptive feature fusion, and a dependencies computation module. The
framework also leveraged contextual information at multiple scales to improve detection
accuracy. Baumgartner et al. [186] proposed nnDetection, a self-configuring method based
on Retina U-Net [187] that could be deployed on arbitrary medical detection tasks. Juneja
et al. [188] introduced a region-based CNN (RCNN)-crop method inspired by the region
proposal network (RPN) and feature pyramid network (FPN). This approach extracts a
cropped patch of the pancreatic region of interest (ROI) from CT images to promote accurate
detection of PC. Dinesh et al. [189] proposed a novel YOLO model-based CNN (YCNN) for
predicting PC in medical images. Their model utilized the YOLO architecture and CNNs to
achieve efficient and accurate detection of pancreatic tumors.

Table 6 shows the comparison of AI models in CT pancreatic images for the object
detection task.

Table 6. Summary of AI methods in CT images for object detection task.

Year Reference Model Dataset Sample Size Performance

2020 [185]
Custom pancreatic

tumor detection
network

A private dataset 2890
Recall = 0.8376,

Specificity = 0.9179,
Accuracy = 0.9018

2021 [186] nnDetection MSD 281 mAP@0.1 = 0.766 (cross
validation) and 0.791 (test set)

2023 [188] RCNN-Crop NIH 19,000 mAP@0.5 = 0.281

2023 [189] YCNN A private dataset 7245 AUC = 1.00, F1-score = 0.99,
Accuracy = 1.00

6.5. Prognosis Prediction

Yao et al. [160] developed a 3D contrast-enhanced convolutional long short-term mem-
ory network (CE-ConvLSTM) that leverages tumor-vascular relationships for predicting the
OS of PDAC patients. Zhang et al. [190] introduced a risk score-based feature fusion tech-
nique that integrated radiomics and transfer-learning features to improve the OS prediction
performance for PDAC patients. Lee et al. [191] utilized ensemble learning to combine
clinical data-based machine learning models (RF, GB, LR, NN, and SVM) and CT data-based
deep learning models (3D ResNet-18 [192], R(2 + 1)D-18 [192], 3D ResNeXt-50 [193], and
3D DenseNet-121 [193]), leveraging preoperative data to predict postoperative survival.
Chen et al. [194] developed a dual-transformation-guided contrastive learning scheme that
effectively addressed data limitations and achieved excellent performance in predicting
lymph node metastasis in PC.
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Table 7 shows the comparison of AI models in CT pancreatic images for the prognosis
prediction task.

Table 7. Summary of AI methods in CT images for prognosis prediction task.

Year Reference Model Dataset Sample Size Performance

2020 [160] CE-ConvLSTM
Three private datasets,
MSD and a combined

dataset [195]

296, 571, 61, 281
and 90 scans C-index = 0.651

2021 [190] RF A private dataset 98 scans AUC = 0.84

2022 [191] Ensemble learning A private dataset 282 scans AUC = 0.76 (2-year OS) and 0.74
(1-year recurrence-free survival)

2023 [194] Custom contrastive
learning scheme A private dataset 157 scans Accuracy = 0.744 , AUC = 0.791,

Recall = 0.740, Specificity = 0.750

6.6. Other Tasks

Image reconstruction/ denosing/super-resolution Lyu et al. [196] reviewed 47 patients
with pathologically confirmed PC who underwent baseline multiphasic CE-CT scans and
used deep learning method for reconstruction, which enhances spatial resolution and
reduces noise texture, improving accuracy in predicting PC resectability and reducing
interreader variability while optimizing the tradeoff between spatial resolution and image
noise in thin-slice CT images. Noda et al. [197] reconstructed pancreatic low-dose CT using
deep learning image reconstruction and compared them with those of images reconstructed
using hybrid iterative reconstruction. Chi et al. [198] proposed a Low Dose CT image super-
resolution network that addresses spatial resolution loss and artifacts. It featured a dual-
guidance feature distillation backbone containing a dual-guidance fusion module (DGFM)
and a sampling attention block (SAB) and introduced the denoising head before and after
the super-resolution head in each path to suppress residual artifacts. Takai et al. [199] found
that deep learning based reconstruction substantially decreased background noise and
enhanced both signal-to-noise ratio and contrast-to-noise ratio in pancreatic protocol CT
scans at 80 kVp. Additionally, the highest quality and visibility of PDAC were achieved
with the high-strength level of the deep learning reconstruction method. Shi et al. [200]
proposed SR4ZCT, a self-supervised method that uses off-axis training to handle various
combinations of resolution and overlap, explicitly modeling the relationship between
resolutions and voxel spacings to accurately simulate training images matching the original
through-plane images.

Image generation Liu et al. [201] trained a self-attention cycleGAN based on cone-
beam CT (CBCT) acquired prior to the first fraction of treatment from thirty patients
previously treated with pancreas SBRT to generate synthetic CTs. CT-based contours
and treatment plans were then compared between first-fraction CBCTs and synthetic CTs.
Similarly, Dai et al. [202] used cycleGAN to generate synthetic CT images from given
CBCT images then trained the mask-scoring regional CNN (MS R-CNN) on generated
images for segmentation. Shi et al. [203] introduced 3DGAUnet, utilizing GANs to produce
realistic 3D CT images of PDAC. Its integration of a 3D U-Net architecture enhances the
learning of shape and texture, improving efficiency and accuracy by preserving contextual
information between slices, validated across diverse datasets, offering a promising solution
to address data scarcity. Hooshangnejad et al. [204] developed a generation model named
deepPERFECT that can capture minor differences and generate deformation vector fields
to transform diagnostic CT into preliminary planning CT of PC, avoiding harm to patients
because of separate image acquisition. Peng et al. [205] used TranscycleGAN to synthesize
CECT from NECT and augment the amount of CT images. All real and synthesized CT
images were used to train the modified 3D U-Net for the automatic delineation of gross
tumor volume. Guan et al. [206] proposed a texture-constrained multichannel progressive
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GAN (TMP-GAN), using joint training of multiple channels. An adversarial learning-based
texture discrimination loss is used to further improve the fidelity of the synthesized images
and a progressive generation mechanism to improve the accuracy of the image synthesizer.
Experiments of generating pancreatic tumor CT images were conducted.

7. Magnetic Resonance Imaging (MRI)
7.1. Introduction to MRI

Magnetic resonance imaging (MRI) is a noninvasive medical imaging technique that
uses nuclear magnetic resonance (NMR) to create detailed, high-contrast, three-dimensional
images of the body for diagnostic purposes [207–209]. Unlike X-rays or CT scans, MRI uses
nonionizing radiation. It produces excellent contrast images of both soft and hard tissues,
by utilizing static and slowly varying magnetic fields and electromagnetic energy in the
high to very high-frequency bands [207]. Compared to typical CT scans, MRI provides
superior contrast images. MRI scans are generally more time-consuming, taking 20 to 9 min
depending on the body part being imaged, but they are painless and do not cause tissue
damage [210].

However, MRI is not suitable for patients with certain metallic implants due to its
reliance on magnetic fields and electromagnetic energy [207]. It is also important to note
that MRI tends to be relatively more expensive. Nevertheless, despite these limitations,
MRI remains an important tool in clinical diagnosis, providing crucial anatomical and
pathological information to assist physicians in making accurate diagnostic and therapeutic
decisions. As technology continues to advance, MRI may further improve its imaging
speed and expand its range of applications, offering patients more accurate and convenient
diagnostic services.

7.2. Classification

Feature extraction + machine learning Cui et al. [211] applied LASSO regression to
classify low and high-grade branching type IPMNs (BD-IPMNs). They determined ROIs
with radiologists and extracted features including histograms, texture parameters, RLM
(run length matrix) GLCM and form factor parameters using MITK software (Medical
Imaging Interaction Tookit 3.1.0.A, GE Healthcare). A linear combination of selected
features with weights was used for grade prediction.

End-to-end deep learning Chen et al. [212] introduced PCN-Net for distinguishing
between MCNs and SCNs in T2 and T1 weighted MRIs. The backbone of this framework
utilized a pretrained InceptionV3 [213]. The fusion of the two modalities was achieved
through a fusion algorithm, followed by a voting algorithm to obtain the results. In another
study, Chen et al. [214] proposed a weighted loss function and applied it to various CNNs.
It is proved that this weighted loss function could improve the accuracy of most CNNs and
reduce the false negatives.

Deep features + machine learning Corral et al. [215] employed a pretrained (fast)
CNN-F [216] to extract features from MRI images, resulting in formed vectors. These
vectors were subsequently transformed using canonical correlation analysis (CCA) and fed
into an SVM classifier. The SVM effectively classified the images into three distinct types:
healthy pancreas, low-grade IPMN, and high-grade IPMN with PDAC.

Unsupervised learning Semi-supervised, weakly supervised, and unsupervised meth-
ods in machine learning and deep learning provide cost-efficient and scalable solutions
by leveraging partially labeled or entirely unlabeled data. Hussein et al. [217] tried both
supervised and unsupervised learning methods. 3D CNN with multitask learning was used
as a supervised method. For unsupervised learning, they employed a proportion-SVM
to classify IPMNs and normal pancreas. They initially cluster appearance features from
images to estimate labels, then compute label proportions for each cluster, and finally use
these initial assignments and proportions to learn tumor categorization.
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7.3. Segmentation

FCN/UNet-based methods for 2D segmentation Asaturyan et al. [218] used a Hausdorff-
Sine loss function to address vague organ boundaries in high class-imbalanced data, op-
timizing boundary delineation using the modified Hausdorff metric and a sinusoidal
component in medical segmentation. Chen et al. [152] proposed the Spiral-ResUNet,
which incorporated a spiral transformation to enhance segmentation performance. This
UNet-based framework leveraged the residual block of ResNet-34 in the encoder module,
enabling effective feature extraction.

FCN/UNet-based methods for 3D segmentation Liang et al. [219] involved regis-
tering MRIs, pre-processing, patch extraction, classification with a square-window-based
CNN architecture, and post-processing to obtain a binary map representing tumor proba-
bility distribution, from from original T1-weighted DCE MRI. Li et al. [220] introduced a
registration-free multimodal and multiscale adversarial segmentation network (MMSA-
Net). This innovative network eliminated the need for registration between different
modalities and scales by employing a shared encoder and two separate decoders. Mazor
et al. [221] proposed an MC3DU-Net, which utilized TSE MRI scan for pancreas ROI
segmentation, transferring it to MRCP scan for cyst detection and segmentation within
the ROI, employing 3D U-Nets trained with Hard Negative Patch Mining to address class
imbalance and reduce false positives.

Graph-based methods for medical image segmentation Cai et al. [222] conducted
pancreatic detection and boundary segmentation using two CNN models: for tissue local-
ization to differentiate pancreas and nonpancreas tissue based on spatial intensity context,
and for boundary determination to delineate the semantic boundaries of the pancreas.
The results from both networks are fused to initialize a conditional random field (CRF)
framework, yielding the final segmentation output. Li et al. [223] proposed an end-to-end
unsupervised domain-adaptive (UDA) segmentation method. This approach took advan-
tage of GCN and a meta-learning strategy to address the challenges of adapting to target
domains without labeled data.

7.4. Object Detection

Chen et al. [212] developed a three-stage modified Faster-RCNN approach. Firstly,
they employed a pretrained VGG16 [224] to extract features from the input. These features
were then used to identify the ROI. Subsequently, a Z-Continuity Filter (ZCF) was applied
to filter the ROIs and improve the accuracy of the detection process.

7.5. Prognosis Prediction

Han et al. [225] applied logistic regression analysis and Cox proportional hazards
regression to figure out the risk factors related to recurrence and disease-free survival (DFS)
among pNET patients who had previously undergone surgery. They considered various
MRI features such as size, location, margin, etc. The analysis revealed that certain MRI
features, including portal phase iso-to hypoenhancement, dilatation of the common bile
duct or main pancreatic duct, arterial invasion, and larger size, had a significant impact on
poor DFS. In another study, Xu et al. [226] extracted MRI features by data-characterization
algorithms in patients with PDAC. Then, the LASSO algorithm was utilized to calculate risk
scores based on MRI features. Then, Cox proportional hazards regression was performed
to create a radiomics-based nomogram to predict survival in patients with PDAC that
combined radiomics data, clinical data and TNM information [227].

7.6. Other Tasks

Image reconstruction/super-resolution Chaika et al. [228] used deep learning-based
super-resolution gradient echo imaging to enhance MRI image quality and reduce ac-
quisition time for pancreatic imaging, minimizing artifacts and easily integrating into
post-processing workflows without protocol modifications.
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Table 8 shows the comparison of AI models in MRI pancreatic images for the classifi-
cation, segmentation, object detection, and prognosis prediction task.

Table 8. Summary of AI techniques in MRIs.

Task Year Reference Model Dataset Sample Size Performance

Classification 2021 [211] LASSO regression A private dataset 202 AUC = 0.903

Classification 2018 [212] PCN-Net Two private
datasets 52 and 68 Accuracy = 0.923

Classification 2018 [214] ResNet-18 A private dataset 115

Accuracy = 0.91,
Precision = 0.86,

Recall = 0.99, AUC = 0.90,
F1-score = 0.92

Classification 2019 [215] SVM A private dataset 139 AUC = 0.78

Classification 2019 [217] Proportion-SVM A private dataset 171
Accuracy = 0.8422,

Recall = 0.972,
Specificity = 0.465

Segmentation 2019 [218]
CNN with

Hausdorff-Sine
loss function

Two private
datasets 180 and 120 DSC = 0.841 and 0.857

Segmentation 2021 [152] Spiral-ResUNet Four private
datasets

65, 69, 68 and
70

DSC = 0.656, 0.640, 0.645,
and 0.653

Segmentation 2020 [219] Square-window-
based CNN A private dataset 56 DSC = 0.73 ± 0.09

Segmentation 2022 [220] MMSA-Net Two private
datasets 67 and 67 DSC = 0.6452 ± 0.1953 and

0.6560 ± 0.1532

Segmentation 2023 [221] MC3DU-Net A private dataset 158 Precision = 0.75,
Recall = 0.80, DSC = 0.80

Segmentation 2016 [222] CNN with CRF A private dataset 78 DSC = 0.761

Segmentation 2021 [223] UDA Four private
datasets

67, 68, 68,
and 64

DSC = 0.6138, 0.6111, 0.6190,
and 0.6007

Object
Detection 2018 [212] Modified

Faster-RCNN
Two private

datasets 52 and 68 Precision = 0.589 and 0.598,
Recall = 0.873 and 0.889

Prognosis
Prediction 2021 [225]

Logistic
regression and
Cox regression

A private dataset 99 -

Prognosis
Prediction 2023 [226] Cox regression A private dataset 78 C-index = 0.78

8. Endoscopic Ultrasonography (EUS)
8.1. Introduction to EUS

Endoscopic Ultrasonography (EUS) is a medical procedure that combines endoscopy
and ultrasound technology to provide high-resolution imaging and detailed tissue charac-
terization of the gastrointestinal tract and adjacent organs. It allows for the visualization of
the digestive system’s walls and nearby structures like the liver, gallbladder, and pancreas.
EUS has the ability to perform fine-needle aspiration (FNA), enabling tissue samples to be
collected for analysis. This minimally invasive and well-tolerated procedure is especially
effective in staging malignancies and evaluating pancreatic and biliary disorders, making it
an invaluable tool for diagnosing and managing various gastrointestinal conditions.

EUS has demonstrated its superiority in detecting masses compared to CT scans.
Studies have shown that EUS exhibits higher sensitivity in mass detection [229]. This im-
proved sensitivity can be attributed to the close-range imaging capability of EUS, allowing
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for detailed examination and precise localization of abnormalities. Unlike conventional
transcutaneous ultrasound examinations, EUS is not limited by pulmonary or bowel gas
interference, ensuring accurate visualization and assessment of the pancreas in real-time. It
provides high-resolution ultrasound images, enabling clinicians to identify and evaluate
pancreatic lesions with exceptional clarity [230].

8.2. Classification

Feature extraction + machine learning Ruano et al. [231] focused on identifying
interest points and calculating intensity gradients, resulting in 64 features from EUS images,
which were used to create a frame feature vector for analysis and classification. To distin-
guish between PC and non-PC cases, the authors applied SVM and AdaBoost algorithms.
Notably, their results outperformed deep learning methods in noisy experiments.

End-to-end deep learning Kuwahara et al. [232] employed ResNet-50 to predict the
malignant probability of IPMN, the precursor of PDAC. The accuracy of this approach
was higher than the human diagnosis. Zhang et al. [233] proposed a system called BP
MASTER, which utilized ResNet in EUS videos to classify pancreas stations. Udris, toiu
et al. [234] combined CNN and long short-term memory (LSTM) to classify PDAC, PNET,
and chronic pseudotumoral pancreatitis (CPP) in EUS images. Nguon et al. [235] used
ResNet-50 in EUS images for MCN and SCN classfication. Bonmati et al. [236] developed a
CNN composed of two branches for voice data and image data, respectively, used to predict
image labels from the spoken names of anatomical landmarks. Vilas et al. [237] applied
the Xception model with pretrained weights to classify Mucinous and Non-Mucinous
pancreatic cystic lesions. Jaramillo et al. [238] used GoogleNet, ResNet-18, and ResNet-50
to distinguish PC and non-PC classes. Ren et al. [239] used ResNet-50 with a feature fusion
layer to combine with clinical features to classify three types of solid pancreatic tumors in
EUS images: PDAC, pNET, and SPN. Kuwahara et al. [240] applied EfficientNetV2-L [241]
to categorize various types of pancreatic tumors, including PDAC, pNET, SPN, PASC,
ACC, metastatic pancreatic tumor, neuroendocrine carcinoma, chronic pancreatitis, and
autoimmune pancreatitis. Fleurentin et al. [242] used different CNNs and ViT models
to classify pancreatic anatomical landmarks and explored the effect of LSTM modules
to utilize temporal information. Li et al. [77] introduced a Dual Self-supervised Multi-
Operator Transformation Network (DSMT-Net), for multisource EUS diagnosis, which
standardized region of interest extraction and employed a transformer-based dual self-
supervised network for pretraining representation models using unlabeled EUS images.

Table 9 shows the comparison of AI models in EUS pancreatic images for the classifi-
cation task.

Table 9. Summary of AI techniques in EUS images for classification task.

Year Reference Model Dataset Sample Size Performance

2022 [231] SVM and AdaBoost A private dataset 55 Accuracy = 0.921, Recall = 0.963,
Specificity = 0.878

2019 [232] ResNet-50 A private dataset 3970 Accuracy = 0.940, Recall = 0.957,
Specificity = 0.926

2020 [233] ResNet Two private datasets 21,406 and 768 DSC = 0.836 and 0.835

2021 [234] Combination of CNN
and LSTM A private dataset 1350 Accuracy = 0.9826, AUC = 0.98

2021 [235] ResNet-50 A private dataset 108 Accuracy = 0.8275, AUC = 0.88

2021 [236] Multi-modal CNN A private dataset 3575 Accuracy = 0.76, Precision = 0.74,
Recall = 0.74, F1-score = 0.74

2022 [237] Xception A private dataset 5505
Accuracy = 0.985,
Specificity = 0.989,

Recall = 0.983, AUC = 1.00
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Table 9. Cont.

Year Reference Model Dataset Sample Size Performance

2022 [238] GoogleNet, ResNet-18,
and ResNet-50 A private dataset 66,249

Accuracy = 0.932,
Specificity = 0.950,

Recall = 0.877, F1-score = 0.870

2023 [239] ResNet A private dataset 12,809 Accuracy = 0.9180

2023 [240] EfficientNetV2-L A private dataset 22,000 Accuracy = 0.91

2023 [242] CNNs and ViT models A private dataset 41 Accuracy = 0.668

2023 [77] DSMT-Net LEPset 11,500
Accuracy = 0.877,

Precision = 0.842, Recall = 0.801,
F1-score = 0.822

8.3. Segmentation

FCN/UNet-based methods for 2D segmentation Zhang et al. proposed a system
named BP MASTER (pancreaticobiliary master) [233] that employed a UNet++ to segment
pancreatic boundaries and achieved comparable results to experts. Iwasa et al. [243]
utilized UNet on contrast-enhanced EUS video images to investigate the influential factors
in segmentation. They found that unclear tumor boundary (TB) negatively impacted the
concordance rate, while respiratory movement (RM) had no significant effect. Oh et al. [244]
employed the Attention U-Net model for automatic pancreatic cyst lesion segmentation
and compared results with the Basic U-Net, Residual U-Net, and U-Net++ models. Seo
et al. [245] developed DAF-Net (neural network model with deep attention features), which
exhibited high accuracy and aided in effective surgical therapy for PC. Ren et al. [239]
introduced an Attention UNet with a feature fusion layer for segmenting solid pancreatic
tumors, assisting doctors in judging tumor scope and boundaries. Tang et al. [246] designed
CH-EUS MASTER based on UNet++ with ResNet-50 as the backbone, a real-time capture
and segmentation model for solid pancreatic masses using CH-EUS. The system offered
equivalent tumor segmentation capabilities to trainer guidance. Studies showed that
segmentation on EUS mainly relies on FCN architectures like UNet and exploration models
with attention mechanisms. There have not been many attempts to use new techniques
that can be further researched, like Transformer-based and other state-of-the-art methods.

Table 10 shows the comparison of AI models in EUS pancreatic images for the segmen-
tation task.

Table 10. Summary of AI techniques in EUS images for segmentation task.

Year Reference Model Dataset Sample Size Performance

2020 [233] UNet++ Three private datasets 2115, 768, and 28 Accuracy = 0.942, 0.824, and 0.862

2021 [243] UNet A private dataset 100 IoU = 0.77

2021 [244] Attention U-Net Two private dataset 57 and 364
DSC = 0.794, IoU = 0.741, Accuracy

= 0.983, Specificity = 0.991,
Recall = 0.797

2022 [245] DAF-Net A private dataset 330

DSC = 0.828, IoU = 0.723,
AUC = 0.927, Recall = 0.890,

Specificity = 0.981,
Precision = 0.851

2023 [239] Attention UNet A private dataset 1049 DSC = 0.7552, mIOU = 0.6241,
Precision = 0.7204, Recall = 0.8003

2023 [246] UNet++ Two private datasets 4530 and 270
DSC = 0.763, Recall = 0.941,

Precision = 0.642,
Accuracy = 0.842, mIoU = 0.731



Sensors 2024, 24, 4749 33 of 58

8.4. Object Detection

There have been some works of object detection in EUS images or videos. Meyer et al. [247]
introduced a real-time framework named the SELSA-TROIA model. It incorporated the
sequence level semantics aggregation (SELSA) [248] and the temporal ROI align (TROIA)
operator [249]. The SELSA considered the sequence information and aggregated features
while the TROIA extracted temporal information. This framework simplified the procedure
by identifying anatomical landmarks and addressing the time-consuming nature of master-
ing EUS. Tian et al. [250] applied YOLOv5m to EUS images and results showed promising
real-time outcomes in detecting PC and reducing misdiagnosis. Jaramillo et al. [251]
proposed a method to approximate the location of tumoral masses in conventional B-
mode Echoendoscopy frames combining a dedicated classifier and an object detection
YOLO architecture.

Table 11 shows the comparison of AI models in EUS pancreatic images for the object
detection task.

Table 11. Summary of AI techniques in EUS images for object detection task.

Year Reference Model Dataset Sample Size Performance

2022 [247] SELSA-TROIA A private dataset 50 mAP@0.5 = 0.5836

2022 [250] YOLOv5m A private dataset 1213 AUC = 0.85, Recall = 0.95,
Specificity = 0.75

2023 [251] Combination of a
classifier and YOLO A private dataset 66,249 IoU = 0.42, Precision = 0.853

8.5. Other Tasks

Image Generation Grimwood et al. [252] trained a Cycle-Consistent Adversarial
Network with unpaired EUS images and CT slices extracted in a manner such that they
mimic plausible EUS views, to generate EUS images from the pancreas, aorta, and liver,
which can be used as a data augmentation strategy when EUS data is scarce.

9. Positron Emission Tomography (PET)
9.1. Introduction to PET

Positron Emission Tomography (PET) is an advanced nuclear imaging technique that
utilizes radionuclides. PET provides information on the functioning of biological processes
using radiolabeled tracers and quantitative mapping [253]. Fluorine-18 (F-18), Carbon-11
(C-11), Nitrogen-13 (N-13), and Oxygen-15 (O-15) are key positron-emitting radioisotopes
employed in PET [254]. These isotopes enable the visualization and analysis of metabolic
processes and find wide applications in diagnosing and treating various malignancies.
PET has an advantage over conventional imaging techniques like CT and MRI since it can
detect abnormal metabolic activity even without visible structural abnormalities in organs.
This makes PET a powerful tool for early detection and monitoring of cancers. It is also
valuable for post-treatment evaluation in cancer patients undergoing chemotherapy or
tumor resection surgeries, assisting in assessing treatment response and the possibility of
recurrence [255].

However, a challenge of PET is to precisely locate functional abnormalities within
anatomical structures. This limitation has been addressed by integrating PET with high-
resolution anatomic imaging modalities to form new images, such as PET-CT and PET-
MRI. By merging the functional information from PET with detailed anatomical images,
clinicians can accurately correlate metabolic activity with specific anatomical locations.
This integration has significantly improved the diagnostic accuracy and clinical usefulness
of PET in oncology [255–257]. The introduction of PET-CT in the early 2000s marked a
significant milestone, enabling comprehensive and multimodal imaging that has greatly
influenced the growth of oncology practices [256].
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9.2. Classification

Feature extraction + machine learning Li et al. [258] presented the hybrid feedback-
SVM-RF (HFB-SVM-RF) model, which incorporated 5 different kernels (Linear, MLP,
Quadratic, Polynomial, and RBF) and 3 hyperplane separation methods (QP, SMO, LS) to
construct a classifier. The features used in the model were extracted through dual threshold
principal component analysis (DT-PCA), which combined principal features and nonprin-
cipal features. Zhang et al. [259] extracted 251 expert-designed features from 2D and 3D
PET/CT images of 111 patients and used RF, Adaboost, SVM with the Gaussian radial
basis function kernel function (RBF SVM), and SVM with the linear kernel function (Linear
SVM) to differentiate AIP from PDAC. Xing et al. [260] employed the XGBoost algorithm
to analyze 18F-FDG PET-CT images for preoperative classification of PDAC into grade 1
and grade 2/3. Initially, the physicians manually segmented the ROIs. Pyradiomics [261]
was used to extract radiomics features from the original images and the ROIs. Following
this, the XGBoost model was built using the selected features to classify PDAC into grade 1
and grade 2/3.

Feature extraction + deep learning Zhang et al. [262] utilized a UNet encoder to extract
image features and an RF algorithm to select important clinical features. Subsequently,
they proposed a Trusted Multi-view Classification (TMC) algorithm to classify images as
either low-grade or high-grade. Specifically, the term “low-grade” encompassed highly,
moderately-highly, and moderately differentiated pathologies, whereas the “high-grade”
category included undifferentiated, lowly, and moderate-lowly differentiated pathologies.
Although clinical features were processed by RF, the image features were all processed in
deep nets, and we regard the segmentation stage as a feature extraction process, thus we
still categorized them in “feature extraction + deep learning”.

Deep learning + machine learning Wei et al. [263] combined deep features and
radiomics features from PET and CT, which were fed into the RAD_model (the fully
connected layers), the DL_model (the VGG11 network) and the MF_model (the fully
connected layers), to classify PDAC and AIP.

9.3. Segmentation

Superpixel extraction Li et al. [258] developed a method called simple linear iterative
clustering (SLIC) with the gray interval mapping (GIM) technique to convert CT scans into
pseudo-color images. They then employed a combination of phase and frequency spectrum
analysis to detect hypermetabolism areas in PET images.

FCN/UNet-based methods for 2D segmentation Zhang et al. [262] improved the
UNet model by incorporating guidance from organ location and applying post-processing
techniques such as erosion, expansion, and threshold segmentation (OLP).

FCN/UNet-based methods for 3D segmentation Suganuma et al. [264] used Dense-
UNet for multiple organs including pancreas segmentation combining information from
PET and CT images. Wang et al. [265] introduced the multimodal fusion and calibration
networks (MFCNet) for segmenting three-dimensional PET-CT images. Their framework
included a multimodal fusion down-sampling block (MFDB) with a residual structure that
fused features from various modal images. Additionally, they employed a multimodal
mutual calibration block (MMCB) based on the inception structure, which combined de-
coding features and pathological features. Shao et al. [266] combined a cross multimodal
fusion (CMF) module with a cross-attention mechanism to fuse complementary multimodal
features, while a mutual information minimization (MIM) module mitigates redundant
high-level modal information and computes the latent loss of PET and CT, enabling effec-
tive feature extraction and segmentation of regions of interest from PET/CT images using
a semi-supervised framework.

9.4. Object Detection

Wang et al. [267] proposed the Multi-scale adaptive attention feature fusion (MAFF)
network for tumor detection in PC using PET-CT imaging, which combined PET and CT
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strengths to improve accuracy. The network used a feature pyramid module for multiscale
feature extraction, an attention module for feature screening, and an adaptive attention
feature fusion network for selecting semantic information.

9.5. Prognosis Prediction

Park et al. [268] used a semi-automatic gradient-based method to determine volumes
of interest (VOI). They applied LASSO regression to extract clinical and radiomic features
from these VOIs. Finally, a 100-layer NN was employed to predict the progression of the
disease within two years for patients with pNET.

Table 12 shows the comparison of AI models in PET pancreatic images for the classifi-
cation, segmentation, and object detection task.

Table 12. Summary of AI techniques in PET images.

Task Year Reference Model Dataset Sample Size Performance

Classification 2018 [258] HFB-SVM-RF A private dataset 1700
Accuracy = 0.965,

Recall = 0.952,
Specificity = 0.975

Classification 2019 [259] RBF SVM and
Linear SVM A private dataset 111

Accuracy = 0.85,
Specificity = 0.84,

Recall = 0.86, AUC = 0.93

Classification 2021 [260] XGBoost A private dataset 149 AUC = 0.921

Classification 2023 [262] TMC A private dataset 370
Accuracy = 0.75,

Recall = 0.77,
Specificity = 0.73

Classification 2023 [263]
RAD_model,

DL_model, and
MF_model

A private dataset 159
Accuracy = 0.901,
Specificity = 0.930,

Recall = 0.875, AUC = 0.964

Segmentation 2018 [258] SLIC A private dataset
and NIH 1700 and 82 DSC = 0.789, IoU = 0.654

Segmentation 2023 [262] UNet with OLP A private dataset 370 DSC = 0.89

Segmentation 2023 [264] DenseUNet A private dataset 48,092 DSC = 0.751

Segmentation 2023 [265] MFCNet A private dataset 93 DSC = 0.7620

Segmentation 2024 [266] CMF module and
MIM strategy A private dataset 93 DSC = 0.7314, IoU = 0.6056,

HD = 6.30

Object
Detection 2023 [267] MAFF A private dataset 880 mAP@0.5 = 0.850

Prognosis
Prediction 2023 [268] NN A private dataset 58 AUC = 0.830

10. Pathological Images
10.1. Introduction to Pathological Images

Pathological images (or histopathological images) serve as visual representations of
tissue samples observed through a microscope, playing a pivotal role in medical diagnosis,
research, and treatment planning. Pathologists rely on these images to detect anomalies,
characterize diseases, and provide guidance to clinicians.

The advent of computer-assisted diagnosis (CAD) in the 1990s revolutionized medical
imaging and diagnostic radiology, concurrently reducing the workload of pathologists [269].
Digital pathology enables the digitalization and analysis of these images, leading to im-
proved diagnostic accuracy [270]. At the core of digital pathology lies whole slide imaging
(WSI), a technology that converts camera-captured static images into a digital format. WSI
entails the scanning of slides via a scanner, followed by the analysis of resulting digital files
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using specialized software. In research, pathological images are invaluable for studying
disease mechanisms and developing targeted therapies [271]. By integrating with other
clinical data, they enable a comprehensive understanding of diseases and support per-
sonalized medicine. Ultimately, these images are indispensable in medical practice and
contribute to advancing patient care.

Rapid on-site evaluation (ROSE) is a diagnostic technique that uses fine-needle as-
piration (FNA). ROSE is of critical importance in the extraction of samples from deeply
seated organs by nonsurgical means. Furthermore, it maintains an intrinsic connection
with pathology by providing images and facilitating the evaluation of masses [272,273].

10.2. Classification

Feature extraction + deep learning Saillard et al. [274] proposed a deep learning-
based approach named PACpAInt that accurately identifies tumor cell types and molecular
phenotypes from routine histological slides, enabling comprehensive analysis of intratumor
heterogeneity on a large scale and providing independent prognostic value.

End-to-end deep learning Chang et al. [275] proposed a deep learning based nucleus
classification (DeepNC) method using CNN to classify cancerous and normal cells at a
single-cell level. Le et al. [276] presented the Noisy Label Classification (NLC) method, also
known as the NLC model, utilizing patches from WSIs to classify regions as cancerous or
noncancerous. Sehmi et al. [277] used 14 different CNN models with pretrained models
on ImageNet for PC grading in pathological images. Ono et al. [278] utilized CNN to
extract features from ROSE (Rapid On-site Evaluation) images and proposed Information-
Maximizing Self-Augmented Training (IMSAT) based on these features, resulting in highly
accurate cluster analysis. The clustering results revealed distinct differences in features and
cell density among different categories. Zhang et al. [279] introduced the Shuffle Instances-
based Vision Transformer (SI-ViT) model, which effectively reduced perturbations in
ROSE images, leading to significant improvements in performance. Ghoshal et al. [280]
presented a Bayesian CNN for automated PC grading from MGG and H&E stained images
to estimate the uncertainty in model prediction. They analyzed the relationship between
the accuracy and uncertainty, and leveraged uncertainty in classification error and reject
tradeoff. Kou et al. [281] proposed a hybrid CNN-Transformer model incorporating
deformable atrous spatial pyramids (DACTransNet), performing automated and accurate
classification of histopathological images of PC.

Table 13 shows the comparison of AI models in pathological pancreatic images for the
classification task.

Table 13. Summary of AI techniques in pathological images for classification tasks.

Year Reference Model Dataset Sample Size Performance

2022 [274] PACpAInt Four private datasets
and TCGA

424, 304, 909, 25,
and 100

AUC = 0.86 (private test set) and
0.81 (TCGA test set)

2017 [275] DeepNC A private dataset 60,036,000
Accuracy = 0.913,
Specificity = 0.928,

Precision = 0.926, Recall = 0.899

2019 [276] NLC TCGA and SEER 190 and 64 AUC = 0.860 and 0.944

2021 [277] CNN models A private dataset 138 Accuracy = 0.9561

2022 [278] CNN with IMSAT - - -

2022 [279] SI-ViT A private dataset 5088
Accuracy = 0.9400,

Precision = 0.9198, Recall = 0.9068,
F1-score = 91.32

2022 [280] BCNN A private dataset 3201
Accuracy = 0.7929,

Precision = 0.7935, Recall = 0.7933,
F1-score = 0.7915



Sensors 2024, 24, 4749 37 of 58

Table 13. Cont.

Year Reference Model Dataset Sample Size Performance

2023 [281] DACTransNet TCGA and three
private datasets

1336 patches from
190 WSIs, 35, 35,

and 38

Accuracy = 0.9634 (TCGA), 0.8973
(Center A), 0.8714 (Center B), and

0.9113 (Center C)

10.3. Segmentation

FCN/UNet-based methods for 2D segmentation In the study of Janssen et al. [282], a
single H&E-stained slide of resected PC post-NAT from 64 patients was digitized, manually
segmented into the tumor, normal ducts, and remaining epithelium classes, with resulting
masks and patches distributed across training, validation, and test sets. Modified U-Nets
employing different encoders were trained, achieving the highest mean segmentation
accuracy with a DenseNet161 encoder. Yang et al. [283] proposed a selective multiscale
attention (SMA) block for gland segmentation in the pancreas, featuring a selection unit
between the encoder and decoder to amplify effective information and suppress redundant
information based on a training-derived factor. Fu et al. [284] applied UNet for PDAC
segmentation in WSIs. Gao et al. [285] put forward a selected multiscale attention network
(SMANet) to accomplish tumor cell segmentation, incorporating the selection unit (SU)
module and the multiscale attention (MA) module, effectively enhancing feature filtration
and information supplementation. Zhang et al. [286] developed a DCNN system based
on UNet for rapid on-site cytopathology evaluation (ROSE) to improve the diagnosis
efficiency. This system demonstrated exceptional robustness and generalization ability. Liu
et al. [287] introduced the multilevel aggregation and global guidance network (MLAGG-
Net). Gao et al. [288] devised a multitask learning framework that adopted the EfficientNet-
b0 encoding structure, featuring mobile inverted bottleneck convolution (MBConv) with
squeeze-and-excitation (SE) modules to extract image features efficiently. Output utilizes
a hierarchical sharing design, with three pathways designed for the main task and two
auxiliary tasks, sharing more parameters as task correlation increases. Chen et al. [289]
introduced a channel-spatial self-attention module, adaptable for mainstream segmentation
networks, enhancing long-range dependency in feature maps and improving segmentation
performance in PC pathology image segmentation.

Table 14 shows the comparison of AI models in pathological pancreatic images for the
segmentation task.

Table 14. Summary of AI techniques in pathological images for segmentation task.

Year Reference Model Dataset Sample Size Performance

2021 [282] Modified UNet A private dataset 16,572 F1-score = 0.86

2021 [283] SMA block A private dataset 24 DSC = 0.8347, Precision = 0.8649,
Recall = 0.8216

2021 [284] UNet A private dataset 231 DSC = 0.8465

2022 [285] SMANet A private dataset 165 mDSC = 0.769, mIoU = 0.665

2022 [286] UNet A private dataset 5345 F1-score = 0.929

2023 [287] MLAGG-Net A private dataset 460 DSC = 0.9002, IoU = 0.8207,
Accuracy = 0.9439, Recall = 0.9136

2023 [288] Multi-task learning
framework A private dataset 555,119 F1-score = 0.97

2024 [289] Channel-spatial
self-attention module A private dataset 329

DSC = 0.7393, IoU = 0.5942,
Accuracy = 0.7526,

Precision = 0.8030, Recall = 0.7177
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10.4. Other Tasks

Image Super-resolution Li et al. [290] reconstructed high-resolution histology images
from low-resolution inputs, employing multiscale FCN to capture hierarchical features and
integrate conditional generative adversarial loss to mitigate blurriness in output images.
Tissue microarray (TMA) dataset used in experiments was previously used in published
PC studies.

Image Reconstruction Kugler et al. [291] proposed a fully nonrigid image registration
method for 3D reconstruction of a whole PC Tumor from Pathology Images with different
stains, considering the spatial continuity and smoothness of each constituent part of the
microstructures in the tissue. They further proposed a nonrigid 3D reconstruction method
based on smooth and continuous internal tissue assumptions. Landmarks detected via
template matching with NCC form trajectories across slices, smoothed during registration,
while NCC confidence handles artifacts by rejecting unreliable landmarks [292]. Although
these two works were all done on the pancreas of KPC mice, they can also be referred to in
research on human beings.

11. Multiple Modalities Analysis

Several studies have employed multiple types of medical images in their AI models.
Combining various modalities effectively augments the dataset. This process enables AI
models to gain visual information on PC tissues from different modalities, consequently
improving accuracy by compensating for individual modality limitations, and creating
more robust and discriminative feature representations, just as doctors sometimes need
to perform multiple imaging examinations to make a diagnosis. Especially, integrating
imaging with pathological data provides a more comprehensive and in-depth understand-
ing at both microscopic and macroscopic levels. Combining imaging with pathological
data bridges the information gap between the two, facilitating more accurate and detailed
diagnosis and treatment planning. Similarly, combining various MRI modalities enhances
accuracy by providing complementary perspectives. Structural imaging offers anatomical
details, diffusion-weighted imaging detects tissue changes, and functional MRI reveals
brain activity. Analyzing these together improves diagnostic precision and physiologi-
cal understanding.

11.1. Traditional Machine Learning

In traditional machine learning, using features from multiple modalities of images as
input is a common practice, which enhances model performance by combining diverse
information to capture richer patterns and relationships in the data, improving predictions
or classifications. Panda et al. [293] leveraged PET-MRI and CT metrics to predict OS.
Principal component analysis was used to extract CT textural features while intra-class
correlation, and the Cohen kappa correlation coefficient were used to extract PET-MRI fea-
tures, then a Cox proportional hazards regression to predict OS using these features. Koch
et al. [294] employed CT and MRI images to classify malignant tissue and predict all-cause
mortality. In their study, radiologists initially performed semi-automatic segmentation and
feature extraction on CT images using the GrowCut algorithm. Following this, they used
Cox proportional hazards regression to predict the survival time of patients from the time
of imaging until death from any cause.

11.2. Muti-Modal Fusion

Methods of multimodal fusion include feature-level fusion and decision-level fusion.
Feature-level fusion combines feature vectors from different modalities into a larger fea-
ture vector, typically achieved by concatenation or concatenation. Decision-level fusion
combines independent decisions or predictions from different modalities, such as through
voting or weighted averaging.

Feature-level fusion involves extracting features from each modality, normalizing and
aligning them if necessary, and then combining them into a single, fused representation.
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This fused representation captures information from multiple modalities and can be used as
input for subsequent machine learning tasks. Feature-level fusion often relies on specially
designed feature fusion modules. Attention-based fusion methods are typical feature-level
fusion techniques, allowing models to dynamically weight the contribution of different
modalities or regions within modalities based on their relevance to the task at hand. This
selective weighting helps in enhancing the discriminative power of the fused representation
while suppressing noise or irrelevant information.

Hussein et al. [295] proposed a CNN-based CAD system for IPMN diagnosis and
risk assessment using multimodal MRI, employing minimum and maximum intensity
projections to mitigate annotation variations and a CNN to extract deep features from
T1-weighted and T2-weighted MRI modalities. Finally, canonical correlation analysis
(CCA) is utilized for feature-level fusion to derive discriminative canonical correlation
features, which are then employed for classification. In the fusion part of Chen et al.’s
works [214], they arranged all slices with an ROI into a volume (simply jump the blank
slices when testing) with their Z-axis index, then resampled the modality with fewer slices
to increase the number of slices. As a result, images of two modalities have the same
number for every patient. Chen et al. [296] introduced a model-driven multimodal deep
learning approach, using a spiral transformation algorithm to convert 3D data into 2D
images, preserving spatial correlation and edge information. The prior knowledge for
multimodal fusion was introduced, enhancing performance, particularly with small sample
sizes. Zhang et al. [297] developed a multimodal fusion system Asymmetric Twinning
Information Interaction Network (ATIIN) to predict the postoperative survival time of
PDAC patients by utilizing both CT images and WSIs. In the ATIIN system, CT images and
WSIs were processed by ResNet-101 and ResNet-50, respectively. Subsequently, feature and
channel attention techniques were applied before combining the features to obtain the final
results. Their study combined the advantages of radiomics and pathomics and improved
the cost-benefit ratio of PCs.

11.3. Cross-Modality Transfer Learning

Cross-modal transfer learning is widely applied in medical imaging to enhance image
recognition, segmentation, and feature extraction tasks by transferring knowledge from one
modality to another, improving diagnostic accuracy and reducing the need for labeled data.
It exploits correlations and shared information between different modalities, mitigating
the challenges of data scarcity and enhancing model generalization and robustness against
noise and artifacts in medical images. Yao et al. [298] introduced the Transferred DenseSE-
Mask R-CNN (TDSMask R-CNN) Network to segment pancreatic tumors, incorporating
Dense and Squeeze-and-Excitation (SE) blocks to learn complementary features from
both PET and MRI images. To overcome the challenge of limited labeled data in PC
segmentation, they pretrained the Dense-SENet on PET images and then transferred its
weights for MRI images.

11.4. Deep Learning-Based Image Modality Conversion

Deep learning-based image modality conversion offers the advantage of maximizing
data utilization in medical imaging and reducing annotation burdens, especially in scenar-
ios with limited data availability. Training on one modality and converting other modalities
to the trained format for inference or converting different modalities into a unified format,
streamlines processing workflows can improve model performance by adapting to more
suitable modalities. Li et al. [299] generated random intermediate modalities between
MRIs and CT to form a larger dataset. Then, they improved Res-UNet with meta-learning
strategies. This framework could be easily integrated into other segmentation networks
and alleviate data scarcity. Cai et al. [300] proposed a generic cross-modality synthesis
approach using an end-to-end 2D/3D CNN, where mutually beneficial generators and seg-
mentors collaborate for image synthesis and segmentation tasks. This method synthesizes
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realistic images without paired training data, maintains consistent anatomical structures,
and improves segmentation performance by using synthetic data.

11.5. Multi Modality-Tasks Models

Some models are not only designed for a single modality but also aim to achieve good
performance on multiple modal tasks. Cai et al. [301] propose a CNN-RNN model for
pancreas segmentation in radiology images, aiming to improve segmentation accuracy
by integrating adjacent slice information. The model combines a 2D CNN for initial
segmentation with an RNN using CLSTM units for refining segmentation consistency across
slices, achieving better performance on both CT and MRI images. Asaturyan et al. [302]
introduced a 2D/3D method for pancreatic segmentation on multimodal radiological scans,
which incorporates a novel post-processing stage to improve tissue classification through
progressive contour analysis. The approach ensures detailed boundary preservation, spatial
smoothness, and consistent tissue classification across slices, with potential applicability to
other abdominal MRI and CT sequences and broader segmentation tasks.

Table 15 shows the comparison of AI models in multiple modalities analysis.

Table 15. Summary of AI techniques in multiple modalities analysis.

Year Modalities Task Reference Method Dataset Sample Size Performance

2021 PET-MRI
and CT

Prognosis
prediction [293] Cox

regression
A private

dataset 44 AUC = 0.87

2023 CT and MRI Prognosis
prediction [294] Cox

regression
A private

dataset 143 AUC = 0.995,
C-index = 0.778

2018 MRI T1w and
MRI T2w Classification [295] CNN-based

CAD system
A private

dataset 139
Accuracy = 0.8280,
Specificity = 0.8167,

Recall = 0.8355

2018 MRI T1w and
MRI T2w Classification [214] PCN-Net A private

dataset 52 and 68 Accuracy = 0.800

2020
MRI ADC,
MRI DWI,

and MRI T2w
Classification [296]

Model-
driven

multimodal
deep learning

approach

A private
dataset 64

Accuracy = 0.736,
Specificity = 0.680,
Precision = 0.810,

Recall = 0.775,
AUC = 0.740,

F1-score = 0.783

2022 CT and WSI Prognosis
prediction [297] ATIIN A private

dataset 356 C-index = 0.70

2023 PET and MRI Segmentation [298] TDSMask
R-CNN

A private
dataset 71

DSC = 0.7833,
Recall = 0.7856,

Specificity = 0.9972

2022 CT and MRI Segmentation [299] Improved
Res-UNet

A private
dataset and

MSD
163 and 281 DSC = 0.6416

and 0.5753

2018 CT and MRI Segmentation [300] CNN Two private
dataset 82 and 78 DSC = 0.788

and 0.704

2018 CT and MRI Segmentation [301] CNN-RNN
model

NIH and a
private
dataset

82 and 79

DSC = 0.833 and
0.807, IoU = 0.718

and 0.682,
Precision = 0.845 and
0.843, Recall = 0.828

and 0.783

2019 CT and MRI Segmentation [302]
Custome
2D/3D
method

NIH and two
private
datasets

82, 216, and
132

DSC = 0.793, 0.796,
and 0.816
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12. Tools, Frameworks, and Software

For intelligent analysis of PC medical imaging, not only methods or algorithms are
important, but also the support of tools, frameworks, and software, which will provide
great convenience for data annotation, algorithm development, clinical usage, and the
integration of medical and engineering research.

12.1. Visulization and Annotation Tools

Medical image annotation is of paramount importance for training deep learning
models, particularly due to the specialized expertise required for accurate labeling. Med-
ical images often encompass complex structures and pathologies, necessitating precise
annotations crucial for training deep learning models. In addition, annotations for medical
images require high levels of accuracy to prevent misdiagnosis or erroneous treatment
plans. Moreover, the 3D image annotation is even more important. Unlike 2D images,
3D images involve additional spatial dimensions, requiring more comprehensive annota-
tion information.

Therefore, the significance of annotation and visualization platforms cannot be over-
stated. DicomWorks [303], free software for reading and working on medical images in
DICOM format, offers several tools for analysis and annotation. The three-dimensional
(3D) slicer [304] is a free, open-source platform for visualization, processing, segmentation,
registration, and analysis of medical, biomedical, and other 3D images and meshes, widely
used by researchers, clinicians, and developers for its interactive tools and stable platform,
remaining compatible with the latest hardware and software advancements. It witnessed
continuous development based on a 3D slicer from the joint effort of the community. ITK-
SNAP [72], a freely available, open-source software tool designed for segmenting structures
within 3D and 4D biomedical images. This versatile application offers semi-automatic
segmentation capabilities utilizing active contour methods, alongside manual delineation
and intuitive image navigation features. RIL-contour [305] allows using fully automated
deep learning methods, semi-automated methods, and purely manual methods with voxel
and/or text annotations. It uses iterative deep learning to accelerate annotation. In order
to perform efficient semi-auto annotation on 3D medical images, EISeg-Med3D [306,307],
a 3D slicer extension, is designed to help users guide a deep learning model to perform
segmentation by providing positive and negative points.

User-friendly, efficient, interactive, semi-automatic medical image annotation tools
will contribute to high-quality medical image datasets, research in medical deep learning
algorithms, and algorithms related to PC diagnosis.

12.2. Platform, Software, and Packages of Radiomics

The platform, software, and packages for radiomics are essential as they enable the
extraction, quantification, and analysis of radiomic features from medical images. They
provide the infrastructure, tools, and algorithms necessary for efficient data processing,
facilitating research and clinical applications. PyRadiomics [261] is an open-source Python
package for extracting radiomics features from medical images, aiming to establish a
reference standard for radiomics analysis, providing a tested and maintained platform
for reproducible feature extraction. With support for both 2D and 3D analysis, it enables
calculations of single values per feature for ROI or generation of feature maps. The
Quantitative Image Feature Engine (QIFE) [308] is an open-source, modular system for 3D
radiomics feature computation. It integrates seamlessly into existing workflows, focusing
on modularity, standards, and parallelism. It offers both MATLAB code and a Docker
container for easy deployment, with benchmarking showing significant time savings
with parallelization. Researchers can customize components and optimize computational
efficiency based on dataset characteristics.
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12.3. Framework of Deep Learning Designed for Medical Image Analysis

Due to issues such as data reading formats in medical imaging, convenience is not
always guaranteed. Frameworks specifically tailored for deep medical imaging, encompass-
ing data reading, preprocessing, commonly used algorithm models, etc., not only enhance
convenience but also facilitate fair comparisons of state-of-the-art methods. DLTK [309]
is a toolkit based on TensorFlow developed to enable fast prototyping with a low entry
threshold and ensure reproducibility in medical image analysis, containing several popular
architectures of networks. However, it has not been updated for a long time. TorchIO [310]
is an open-source Python library for preprocessing, augmentation, and sampling of medical
images for deep learning, which supports 2D, 3D, and 4D images such as X-ray, histopathol-
ogy, CT, ultrasound and diffusion MRI. MONAI [311] extends PyTorch for medical data,
offering specialized AI model architectures, transformations, and utilities to simplify med-
ical AI model development and deployment, which also maintains the simplicity and
compositional nature of PyTorch libraries it builds upon. MedicalSeg [306,312], an easy-to-
use 3D medical image segmentation framework handling the whole segmentation process
including data preprocessing, model training, and model deployment based on PaddlePad-
dle deep learning framework. It supports many cutting-edge models and corresponding
high-precision pretraining models. Although these frameworks provide users with great
convenience, the constant emergence of new methods in academia and industry poses
challenges for the timely updating of these unified frameworks.

13. Special Topics and Future Directions
13.1. Efficient and Light Model Design

Given the constraints of devices’ performance in hospitals, the importance of designing
medical imaging models that are efficient and lightweight cannot be overstated. These
models are tailored to operate seamlessly within the limitations of hospital hardware,
ensuring swift and accurate processing of medical images without taxing computational
resources. By prioritizing efficiency and minimizing computational overhead, such designs
empower healthcare professionals to swiftly analyze medical images, facilitating timely
diagnoses and enhancing patient care. Models and backbones like MobileNet [313] and
ShuffleNet [314], as well as real-time detection models like tiny versions in the YOLO series,
and lightweight U-Net variants like UNext [315], MALUNet [316] and EGE-UNet [317] are
specifically designed to address computational efficiency. However, in PC analysis, there is
still relatively little focus on lightweight design and real-time performance.

13.2. Domain Generalization

Although deep learning models have achieved comparable results to radiologists on
specific datasets, the imaging equipment and pancreas morphology vary greatly in the
real world. To realize the wide application of deep learning models for clinical diagnosis
and treatment, the domain shift problem needs to be addressed, namely the distributional
gap between training and test data. Domain generalization aims to solve this problem
by developing models with stable performance for unknown domains. Differences in
data acquisition, high-dimensional data, data labeling, and model ethics are challenges in
domain generalization for medical image analysis [318].

Data-level domain generalization includes data manipulation and data augmentation.
Data manipulation transforms the existing data, while data augmentation creates new
samples based on the existing ones. In addition, methods are used to process particular
input image modalities, like cross-modal generative models [319–321] and stain normal-
ization [322]. Feature-level domain generalization utilizes domain-invariant features to
improve model performance, feature alignments, disentanglement methods, feature aug-
mentation, and kernel-based learning are commonly used techniques. Model-level domain
generalization focuses on the improvement of learning strategy and model framework.
Meta-learning, self-supervised learning, and adversarial learning are effective learning
strategies. Ensemble learning, model distillation, and distributed learning are typical
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improved models. Zhang et al. [323] introduced a deep stacked transformation approach
for domain generalization. During network training for 3D segmentation tasks on MRI
and EUS images, a series of stacked transformers were applied to each image. Research on
domain generalization of pancreatic medical images is limited, and universal AI models
that can be used for clinical diagnosis and treatment still need to be developed from the
direction of data, feature, model, and analysis levels.

13.3. Multimodal Tasks

Medical Visual Question Answering (MedVQA) is an AI technology designed to
answer questions related to medical images. This technology combines computer vision
and NLP, enabling computers to understand medical images and respond to questions
about them. PMC-VQA [324], PathVQA [325], and VQA-RAD [326] are all good works as
public VQA datasets. Although some public VQA datasets include questions related to the
pancreas and PC, they are insufficient to cover the full spectrum of cases. There has not
been specific medical VQA research dedicated solely to the pancreas and PC. This is an area
ripe for exploration and offers potential for utilizing multimodal large models, through
which doctors and researchers can query computers about patient diagnoses, treatment
plans, and more about the health of the pancreas, obtaining answers from medical images,
helping improve the efficiency and accuracy of medical diagnoses.

The report generation task in clinical images is close to MedVQA, automatically
generating textual descriptions or summaries based on the content of medical images, such
as X-rays, MRI scans, CT scans, and histopathology slides, which can assist radiologists,
pathologists, and other medical professionals in interpreting and documenting findings
from medical images efficiently. Related works about the pancreas and PC in images of
different modalities are also limited, which can be further explored.

Recently, large multimodal language models (LLM) have achieved notable success
in general domains but face limitations in medical scenarios due to significant differences
between medical images and text. Currently, visual-language and multimodal models
tailored to specific organs or diseases are also being developed, such as OphGLM [327], a
newly developed ophthalmic multimodal model, demonstrating the potential for revolu-
tionizing clinical applications in ophthalmology. Drawing inspiration from the progress in
ophthalmology, the development of a dedicated pancreatic multimodal language model
(PMLM) could also be expected.

13.4. Large Model Empowered Solutions

Large models’ increased capacity allows them to capture and understand complex
patterns and relationships within data more effectively. Moreover, large models tend to
have better generalization capabilities, adapting well to new, unseen data and domains.
They enable more sophisticated and nuanced representations of information, facilitating
more accurate and insightful outputs.

Contrastive Language-Image Pretraining (CLIP) [180] stands as a simple yet potent
pretraining paradigm. Thanks to its versatility and interpretability, it demonstrates promis-
ing results across a spectrum of tasks. It also has gained increasing attention and achieved
wide application in the field of medical image analysis, serving as a pretraining paradigm
for image-text alignment, or a component in different clinical tasks [328] including zero-
shot classification [329], object detection [330], 2D image segmentation [331] and 3D image
segmentation [178,179], as well as some cross-modality tasks [332]. As CLIP continues to
evolve and adapt to the specific challenges posed by medical image analysis, its integration
into clinical practice in PC diagnosis and treatment is expected to grow exponentially.

As we mentioned earlier, the segment anything model (SAM) [333] has been trained
on millions of images and more than a billion masks, enabling it to produce effective
segmentation masks for any input, archiving impressive zero-shot performance. And
experiments show that it can also be a valuable tool in medical image segmentation if used
correctly [176]. The continuous effort to make SAM adapt to medical images or to train a
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new zero-shot medical image segmentation has been witnessed. Zhang et al. [334] proposed
SAMed, applying the low-rank-based (LoRA) fine-tuning strategy to the SAM image
encoder and fine-tuning it together with the prompt encoder and mask decoder on labeled
medical image segmentation datasets. Wu et al. [335] proposed the Medical SAM Adapter
(Med-SA), incorporating domain-specific medical knowledge into the segmentation model,
using Space-Depth Transpose (SD-Trans) to adapt 2D SAM to 3D medical images and
Hyper-Prompting Adapter (HyP-Adpt) to achieve prompt-conditioned adaptation. Ye
et al. [336] introduced SA-Med2D-20M, a large-scale segmentation dataset of 2D medical
images built upon numerous public and private datasets, which consists of 4.6 million 2D
medical images and 19.7 million corresponding masks, covering almost the whole body and
showing significant diversity to incorporate medical knowledge into SAM. Although there
have been some efforts in this regard, achieving zero-shot segmentation of the pancreas
and PC remains challenging due to the limited availability of datasets containing diverse
modalities of pancreatic and PC data. Larger and more diverse datasets of PCs are expected,
which will facilitate the ability of large models to better address PC-related challenges.

13.5. Explainability

Deep learning models often appear as black boxes, and medical experts have expressed
concern about such a nature [337]. Healthcare professionals and researchers need to
comprehend the model’s decision-making process and outcomes to ensure the reliability of
the diagnosis and treatment decisions. In explainability research, most current works utilize
post hoc explanation methods instead of model-based explanations, providing explanations
on trained neural networks rather than incorporating them during training, predominantly
employing local explanations rather than global ones, particularly suited for deep learning
in medical image analysis. In the future, the adoption of holistic approaches, the integration
of biological explanations, and the exploration of the link between causality and Explainable
AI will become increasingly important [338]. Therefore, exploring the explainability of
deep learning models in the pancreas and PC research could be a promising direction for
future investigation.

14. Conclusions

This study summarized applications of AI on five modalities and integrated modalities
of medical images related to the pancreas and PC. AI models demonstrate reasonable results
in segmentation, classification, object detection, prognosis prediction, and other tasks in
the experiment stage and perform similarly to human experts in many studies, which
highlights the potential of AI to help doctors and alleviate their workload in the diagnosis
and treatment of PCs. However, the overall accuracy of the pancreatic analysis lags behind
that of other organs, mainly due to the size and variable characteristics of the pancreas. In
addition, AI studies using MRI, pathology images, and PET imaging for target detection and
prognosis prediction are still limited. The lack of comprehensive medical image datasets
and further modeling studies challenges the widespread use of AI techniques in clinical
settings. Despite these challenges, lightweight model design, multimodal tasks, large
model-empowered solutions, and explainability are future directions that will enhance the
efficiency and reliability of AI-based analysis. In addition, AI scientists should work more
closely with doctors while also continuing to improve human understanding and attention
to PC. With the joint efforts of all sectors, the probability of early screening for PC will be
increased, and the threat posed by this disease to human health will be overcome as much
as possible.
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