
Research Article
Multiclass AdaBoost ELM and Its Application in LBP
Based Face Recognition

Yunliang Jiang,1,2 Yefeng Shen,1,3 Yong Liu,1 and Weicong Liu1

1 Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
2School of Information & Engineering, Huzhou Teachers College, Huzhou 313000, China
3School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

Correspondence should be addressed to Yong Liu; yongliu@iipc.zju.edu.cn

Received 22 August 2014; Revised 11 November 2014; Accepted 18 November 2014

Academic Editor: Jiuwen Cao

Copyright © 2015 Yunliang Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Extreme learning machine (ELM) is a competitive machine learning technique, which is simple in theory and fast in
implementation; it can identify faults quickly and precisely as compared with traditional identification techniques such as support
vector machines (SVM). As verified by the simulation results, ELM tends to have better scalability and can achieve much better
generalization performance andmuch faster learning speed comparedwith traditional SVM. In this paper, we introduce amulticlass
AdaBoost based ELM ensemble method. In our approach, the ELM algorithm is selected as the basic ensemble predictor due to
its rapid speed and good performance. Compared with the existing boosting ELM algorithm, our algorithm can be directly used
in multiclass classification problem. We also carried out comparable experiments with face recognition datasets. The experimental
results show that the proposed algorithm can not only make the predicting result more stable, but also achieve better generalization
performance.

1. Introduction

Many research works have been done in feedforward neural
networks, which pointed out that the feedforward neural
networks are able to not only approximate complex nonlinear
mapping, but also provide models for some natural and
artificial problems which classic parametric technics are
unable to handle.

Recently, Huang et al. [1] proposed a new simple algo-
rithm based on single layer feedforward networks (SLFNs)
called extreme learning machine (ELM). For ELM randomly
generates parameters of the networks, its learning speed can
be thousands of times faster than traditional feedforward
network learning algorithms like back-propagation (BP)
algorithm, which needs to iterate many times to get optimal
parameters.

In addition, Huang [2] also shows that in theory ELMs
(with the same kernels) tend to outperform SVM and its
variants in both regression and classification applications
with much easier implementation. Based on this conclusion,

the paper in the literature proposed by Wong et al. [3]
explores the superiority of the fault identification time of
ELM.

In view of the advantages of the algorithm, Cao et al. put it
into some areas, such as landmark recognition [4] and protein
sequence classification [5]. Besides, Cao et al. [6] proposed
an improved learning algorithm which incorporates the
voting method into the popular extreme learning machine in
classification applications and outperforms the original ELM
algorithm as well as several recent classification algorithms.

AdaBoost [7] is one of the most popular algorithms
of classifier ensemble to improve the generalization perfor-
mance. Wang and Li in [8] proposed an algorithm named
dynamic AdaBoost ensemble ELM (named DAEELM in this
paper). The proposed algorithm takes the ELM as the basic
classifier and applies AdaBoost to solve binary classification
problem. Similarly, Tian and Mao in [9] combined the
modified AdaBoost.RT [10] with ELM to propose a new
hybrid artificial intelligent technique called ensemble ELM.
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Ensemble ELM aims to improve ELM’s performance in
regression problem.

However, until now, not so much works have been
done to apply AdaBoost to ELM for multiclass classification
problem directly. In Freund and Schapire’s work [11], they
give two extensions of their boosting algorithm to multiclass
prediction problems in which each example belongs to one of
several possible classes (rather than just two). Since ELM can
directly work for multiclass classification problem, this paper
proposes an algorithm named multiclass AdaBoost ELM
(MAELM). This new algorithm applies multiclass AdaBoost
as an ensemble method to a number of ELMs. In addition,
this paper proposes a structure to apply ELM and MAELM
to local binary patterns (LBP) [12] based face recognition
problem. Experiments in LBP based face recognition will
show that the proposed algorithm outperforms the original
ELM.

This paper is an extension of our previous work [13]. In
this paper, we extend our previous work by proposing a new
way to combine ELM with PCA instead of using random
weights between the input layer and the hidden layer, as
well as the bias of the activation function. Experiments in
LBP based face recognition will show the stable and good
performance with our extended approach.

The rest of the paper is organized as follows. Section 2
gives a brief review of the ELM and PCA, original and
multiclass AdaBoost and LBP. The proposed MAELM is
presented in Section 3.The experimental result will be shown
in Section 4 and a short discussion about the proposed
algorithmwill be presented in Section 5. Finally, in Section 6,
we conclude the paper.

2. A Review of Related Work

In this section, a review of the original ELM algorithm
and PCA and multiclass AdaBoost and the LBP based face
recognition is presented.

2.1. ELM. For𝑁 arbitrary distinct samples (𝑥
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Different from the conventional gradient-based solution
of SLFNs, ELM simply solves the function by

𝛽 = 𝐻
+
𝑇. (4)

𝐻
+ is the Moore-Penrose generalized inverse of matrix

𝐻. As Huang et al. have pointed out in [14], 𝐻+ can be
represented by

𝐻
+
= 𝐻
𝑇

(
𝐼
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𝑇
)

−1

, (5)

where 𝐼 is an identity matrix, which has the same dimension
with 𝐻𝐻

𝑇. 𝐶 is a constant number which can be set by the
user. Adding 𝐼/𝐶 can avoid the situation that𝐻𝐻𝑇 is singular.
Huang et al. [1] successfully applied ELM to solve binary
classification problem and Huang et al. [14] extended the
ELM to directly solve the multiclass classification problem.

Since the original ELM randomly generates the weights
between the input layer and the hidden layer, as well as the
bias of the activation function, its performance may be not so
stable. Instead of that, some other ways like PCA algorithm
rewards to try.

2.2. PCA. Principal component analysis (PCA) was invented
in 1901 by Pearson [15], as an analogue of the principal
axes theorem in mechanics, which was later independently
developed (and named) by Hotelling in the 1930s [16]. Now,
it is mostly used as a tool in exploratory data analysis and for
making predictive models. PCA can be done by eigenvalue
decomposition of a data covariance (or correlation)matrix or
singular value decomposition of a data matrix, usually after
mean centering (and normalizing or using𝑍-scores) the data
matrix for each attribute [17].The results of a PCA are usually
discussed in terms of component scores, sometimes called
factor scores (the transformed variable values corresponding
to a particular data point) and loadings (the weight by which
each standardized original variable should be multiplied to
get the component score).

The procedure of PCA is as follows:
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Step 1. Compute the matrix𝑉which is the covariance
matrix of𝑋.
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Step 2. Find out the eigenvalue of |𝑉 − 𝜆𝐸| = 0, 𝜆
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Step 3. Compute the standardization feature vector of
(𝑉 − 𝜆𝐸)𝛽 = 0 𝛽

1
, 𝛽
2
, . . . , 𝛽
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Step 4. Yield the principal components𝑌
𝑟
= 𝛽
󸀠

𝑟
𝑋 (𝑟 =

1, 2, . . . , 𝑝).

𝐸 is an identitymatrix, which has the same dimensionwith𝑉.
The matrix 𝑌 consists of 𝑛 row vectors, where each vector is
the projection of the corresponding data vector from matrix
𝑋.

PCA is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorre-
lated variables called principal components. The number of
principal components is less than or equal to the number
of original variables. This transformation is defined in such
a way that the first principal component has the largest
possible variance, and each succeeding component in turn
has the highest variance possible under the constraint that
it is orthogonal to (i.e., uncorrelated with) the preceding
components. Principal components are guaranteed to be
independent if the dataset is jointly normally distributed.
PCA is sensitive to the relative scaling of the original
variables.

2.3. Original AdaBoost and Multiclass AdaBoost. AdaBoost
has been very successfully applied in binary classification
problem. Original AdaBoost is proposed in [7]. Before
proposing the AdaBoost algorithm, the function 𝐼(𝑥) is
predefined as

𝐼 (𝑥) = {
1, if 𝑥 = true
0, if 𝑥 = false.

(7)

AdaBoost algorithm is summarized as follows.
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𝑑 dimensions, 𝑦
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classifier and suppose𝑀 weak classifiers will be combined.
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(e) renormalize 𝜔
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(3) Output
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Here, 𝑘 is +1 or −1. In binary classification, any classifier
whose generalization performance is better than 1/2 is a weak
classifier. For the original AdaBoost, we have the following.

(1) For the 𝑖th and the 𝑗th classifiers, if err
𝑖
< err

𝑗
<

1/2, we have 𝛼
𝑖
> 𝛼
𝑗
> 0, which means the final

ensemble classifier values more of the 𝑖th classifier’s
result. Specifically, if err

𝑗
= 1/2, 𝛼

𝑗
= 0, which means

the final ensemble classifier just ignores the classifier
since its effect is the same as random guess.

(2) If the 𝑝th classifier misclassifies the 𝑞th sample, the
𝑞th sample will have a big weight in the next iteration.
As a result, the (𝑝 + 1)th classifier will pay more
attention to it. On the contrary, if the 𝑝th classifier
classifies the 𝑞th sample correctly, the 𝑞th sample will
have a small weight in the next iteration, whichmeans
(𝑝 + 1)th classifier will pay less attention to it.

However, for a 𝐾-class classification problem, we have
𝑦
𝑖
∈ {1, 2, . . . , 𝐾} and 𝐾 > 2. If a classifier’s generalization

performance is better than 1/𝐾 (maybe much smaller than
1/2), it can be called aweak classifier. Since original AdaBoost
only takes a classifier whose generalization performance is
better than 1/2 as a weak classifier, obviously, it cannot be
directly implemented tomulticlass conditions that𝐾 is bigger
than 2. Freund and Schapire [11] extend the originalAdaBoost
to multiclass condition. The weight of the 𝑚th classifier is
modified as

𝛼
𝑚
= log

1 − err
𝑚

err
𝑚

+ log (𝐾 − 1) . (12)

Similar to the binary condition, for the 𝑖th and the 𝑗th
classifiers, if err

𝑖
< err
𝑗
< 1 − 1/𝐾, we have 𝛼

𝑖
> 𝛼
𝑗
> 0,

which means the final ensemble classifier values more of the
𝑖th classifier’s result. In particular, if err

𝑗
= 1 − 1/𝐾, 𝛼

𝑗
= 0.

2.4. LBP Based Face Recognition. The original LBP operator
goes through each 3×3 neighborhood in a picture. It takes the
center pixel as the threshold value of the neighborhood and
considers the result as a decimal number. The LBP operator
is shown in Figure 1. Then, the texture of the picture can be
represented by the histogram of all the decimal numbers.

To apply LBP operator in face recognition problem, Aho-
nen et al. [12] divided the face image into several windows and
calculated the histogram of each window by LBP operator.
The final feature vector is gotten by combining the histograms
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Figure 1: Basic LBP operator.

into a spatially enhanced histogram. The spatial enhanced
histogram is provided with three levels of information: the
patterns of pixel level; the patterns of regional level; the
global patterns of the face image. Experiments in [12] have
shown that the LBP description is more robust against
variants in pose or illumination thanholisticmethods.All our
experiments in Section 4 are done with themost original LBP
operator.

3. MAELM and Face Recognition Structure

In this part, the multiclass AdaBoost ELM (MAELM) algo-
rithm is proposed and a structure of face recognition based
on LBP and ELM is also included.

3.1. Proposed MAELM Algorithm. By applying the multi-
class AdaBoost to ELM, this paper proposes the multiclass
AdaBoost ELM (MAELM) algorithm. The algorithm takes a
number of ELM classifiers as the weak classifiers. ELM

𝑖
(𝑥)

denotes the 𝑖th ELM classifier. The proposed algorithm is put
as follows.

(1) Initialize the observation weights 𝜔
𝑖
= 1/𝑁, 𝑖 =

1, 2 . . . , 𝑁.
(2) For𝑚 = 1 : 𝑀,
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𝑚
(𝑥) to the training data

using weights 𝜔
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;

(b) compute the weighted error
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∑
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(c) compute the weight of the𝑚th classifier
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(d) update the weight of sample data, for all 𝑖 =
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⋅ exp (𝛼
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(e) renormalize 𝜔
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(3) Output

𝐶 (𝑥) = argmax
𝑘

𝑀

∑

𝑚=1

𝛼
𝑚
⋅ 𝐼 (ELM

𝑚 (𝑥) = 𝑘) . (16)

Part (2)(a) of the proposed algorithm should be paidmore
attention. Both [8, 9] did not give any detail of how to fit the
basic classifier ELM

𝑚
(𝑥) with weighted samples, but it is a

very important part of AdaBoost. Zong et al. [18] proposed an
algorithm named weighted ELM by introducing a diagonal
matrix 𝑊 ∈ 𝑅

𝑁×𝑁, whose element 𝑊
𝑖,𝑖
denotes the weight

of the 𝑖th training sample. In view of some special situations,
we introduce the weighted ELMalgorithm.Obviously, it boils
down to the original one when the weighted matrix is the
identity matrix.

The proposed method maintains the advantages from
original ELM: (1) it is simple in theory and convenient in
implementation; (2) wide types of feature mapping functions
or kernels are available for the proposed framework; (3)
the proposed method can be applied directly into multiclass
classification tasks. In addition, after integrating with the
weighting scheme, the weighted ELM is able to deal with
data with imbalanced class distribution while maintaining
the good performance on well-balanced data as unweighted
ELM; by assigning different weights for each example accord-
ing to the users’ needs, the weighted ELM can be generalized
to cost sensitive learning.

Under the weighted circumstance, the solution of 𝛽

becomes

𝛽 = 𝐻
𝑇
(
𝐼

𝐶
+𝑊𝐻𝐻

𝑇
)

−1

𝑊𝑇. (17)

3.2. Application in LBP Based Face Recognition. This paper
combines LBP based feature vectors with ELM to build a face
recognition structure. There have been some papers [19, 20]
about applying ELM in face recognition problem. However,
the existed ELM based face recognition structures are all
based on statistical features, for example, PCA [21] and LDA
[22].

In order to get better generalization performance, the
proposed face recognition structure implements the LBP
based method to get the feature vector and ELM as the
classifier. It has been proved in [12] that LBP based method
is more robust than PCA and LDA when lighting, facial
expression, and poses change. At the same time, ELM is
very fast in classification and has very good generalization
performance. So, it is reasonable to combine LBPmethod and
ELM to build the face recognition structure.

There are two steps of the proposed face recognition
structure. The first step is to train the training samples by
ELM or MAELM. In this step, the training samples are
represented by LBP based feature vectors. Then, the feature
vectors are used to train the classifier model by ELM or
MAELM; see Figure 2.The second step is to predict the labels
of the test samples. The test samples are also represented
by the LBP based feature vectors. Then, the classifier model
trained in the first step is implemented to predict the labels of
the test samples; see Figure 3.

4. Experiments

In this paper, two of themostly used face recognition datasets
Yale and ORL are used to prove the efficiency of the proposed
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Figure 2: Training the samples by ELM or MAELM.
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vectors
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model

Predicted 
labels

Figure 3: Predicting the labels of test samples.

Table 1: Parameter list.

Parameters Meaning
𝑀 Number of the basic classifiers
𝐶 Constant value in generalized inverse of𝐻
𝐿 Number of hidden nodes in ELM
𝑡 Number of training images of each person
𝑤 Divide each face image into 𝑤 ∗ 𝑤 windows
𝑟 The dimension after reduction

algorithm. To make the results valid, except for Section 4.2,
the average testing accuracy is obtained on 20 trials randomly
generated training set and test set. This paper chooses the
sigmoid function as the activation function for it is the most
commonly used one.

The parameters to set and their meanings in the experi-
ments are listed in Table 1. For example, if the experiment sets
𝑀 = 10, 𝐶 = 1, 𝐿 = 1000, 𝑡 = 5, and 𝑤 = 5, it means that
selecting 5 images of each person builds the training set and
the remaining images build the test set. Each image is divided
into 5 × 5 windows. After building the training and test set,
ELM with 𝐶 = 1, 𝐿 = 1000 and MAELM, which combines 10
ELMs with 𝐶 = 1, 𝐿 = 1000, are evaluated in the built sets.

4.1. Performance Changes with 𝐶 and 𝐿. Although ELM is
comparatively not that sensitive to the arguments as SVM,
its performance still changes with the hidden layer number
𝐿 and the constant value 𝐶.

Suppose we have 𝑁 training samples; Huang et al. [1]
rigorously prove that SLFNs (with 𝑁 hidden nodes) with
random bias and input weights can exactly learn the 𝑁

distinct observations. If the training error is allowed, the
number of hidden nodes can be much smaller than𝑁. At the
same time, the constant value 𝐶 also has some impacts of the
solution of𝐻’s Moore-Penrose generalized inverse.

In this part, the experiment is conducted in Yale dataset.
The experiment sets𝑀 = 20, 𝑡 = 5, and 𝑤 = 3. In addition,

the 𝐿 is set as 100, 400, 700, . . . , 1900 and the 𝐶 is set as
10
−5
, 10
−4
, . . . , 1, 10

1
, 10
2
, . . . , 10

5. The performance of ELM
and MAELM is shown in Figure 4.

It is obvious that both ELM andMAELMare not sensitive
to the change of arguments.The difference between ELM and
MAELM is mainly in the region where 𝐿 is very small and
𝐶 is very large. From Figure 4, one can conclude that ELM
performs badly in this region, since its accuracy rate is below
0.6.On the contrary,MAELM is still very stable in this region.
Its accuracy rate is bigger than 0.8.

After seeing PCA’s good performance in the region of face
recognition, we wonder if PCA could have a stable and better
performance when it replaces the way we originally construct
the matrix𝐻.

The experiment is also conducted in Yale dataset with the
same parameters. Besides, the new parameter 𝑟, which is the
dimension after reduction, could not be set bigger than the
number of input nodes. In view of the dimension of dataset
and other limitations in the experiment, the parameter 𝑟 is set
as 10, 20, . . . , 60. Since it is complex in the picture because of
the imbalancewith the parameters change, we choose to show
them in the table.The performance of ELM (Figure 4(a)) and
MAELM (Figure 4(b)) with PCA is listed in Table 2; the best
accuracy rate in the table is bold.

It is clear that both ELM and MAELM with PCA are
not so sensitive to the change of arguments. The difference
between them is mainly in the region where 𝐿 is very small
and 𝐶 is very large. From Table 2, one can conclude that
MAELM with PCA performs better in this region when 𝐶 is
very small, but when𝐶 is large and 𝑟 is small, ELMwith PCA
performs rather well and stable. Besides, ELM with PCA’s
performance is almost as well as the other one in the region
where 𝐶 and 𝑟 are both very large, and its accuracy rate is
bigger than 0.85.

4.2. Prediction Stability Analysis. Since the original ELM
randomly generates the weights between the input layer
and the hidden layer, as well as the bias of the activation
function, its performance even for the same training and
test set changes each time. This is to say the performance of
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Figure 4: The performance of ELM (a). The performance of MAELM (b).

Table 2: Performance of ELM and MAELM with PCA.

𝐶/𝑟 10 20 30 40 50 60
10
−5 0.19/0.38 0.29/0.33 0.2/0.32 0.23/0.41 0.09/0.15 0.22/0.30

10
−4 0.19/0.20 0.22/0.40 0.21/0.21 0.36/0.35 0.27/0.28 0.26/0.38

10
−3 0.27/0.39 0.38/0.35 0.24/0.46 0.37/0.36 0.33/0.31 0.38/0.30

10
−2 0.43/0.34 0.76/0.32 0.85/0.32 0.86/0.43 0.86/0.37 0.86/0.35

10
−1 0.79/0.36 0.84/0.43 0.88/0.40 0.88/0.36 0.90/0.42 0.91/0.53

10
0 0.84/0.58 0.95/0.76 0.86/0.81 0.90/0.85 0.87/0.82 0.91/0.87

10
1 0.77/0.66 0.90/0.87 0.89/0.88 0.91/0.91 0.98/0.97 0.91/0.88

10
2 0.77/0.73 0.85/0.87 0.91/0.91 0.90/0.92 0.94/0.92 0.92/0.92

10
3 0.77/0.74 0.90/0.89 0.92/0.93 0.94/0.94 0.93/0.95 0.90/0.92

10
4 0.74/0.55 0.91/0.88 0.93/0.93 0.88/0.88 0.91/0.91 0.85/0.86

10
5 0.79/0.71 0.87/0.87 0.87/0.87 0.97/0.97 0.96/0.96 0.91/0.91

original ELM may not be so stable. The proposed algorithm
successfully reduces the instability.

From Figure 4, one is able to conclude that ELM tends to
get better performance when 𝐶 = 1, while 𝐶 = 10

3 is better
for MAELM. Let 𝑀 = 10, 𝐶 = 10

3, 𝐿 = 1000, 𝑡 = 5, and
𝑤 = 3 for MAELM and 𝐶 = 1, 𝐿 = 1000, 𝑡 = 5, and 𝑤 = 3

for ELM. Besides, ELM and MAELM (𝑟 = 20) with PCA are
also included under the corresponding situations because of
the considerate performance above. Experiments are done in
Yale datasets. In order to prove that the proposed algorithm
is more stable than the original ELM, experiments are done
in the same training set and test set (randomly generated) for
20 times. The result is shown in Figure 5.

In Figure 5, it is obvious that the performance ofMAELM
ismuchmore stable than the original ELM.Although ELMor
MAELMwith PCAperforms farmore stable than the original
ELM and MAELM (since they take the algorithm of PCA
into consideration instead of the randomweights between the
input layer and the hidden layer and the bias of the activation
function), the accuracy rates of them, which are always in the
middle from Figure 5, are still not so good as the original
MAELM. We conclude the result of Figure 5 in Table 3.
Please notice that although the generalization performance

Table 3: Performance of ELMandMAELMunder the same training
set and test set.

Algorithm Mean accuracy rate Standard derivation
ELM 0.8972 0.0213
MAELM 0.9361 0.0157
ELM PCA 0.9222 0
MAELM PCA 0.9222 0

of MAELM seems to be much better than ELM in the table, it
is improper to conclude that MAELM performs better. The
reason is that the training set and test set are fixed. One
cannot exclude the possibility that MAELM performs better
than ELM only under this dataset. Some other experiments
will be done in the following parts to show MAELM’s better
generalization performance.

4.3. Performance Changes with 𝑀. In order to evaluate the
changes of performance when 𝑀 changes, the experiment
in this part lets 𝐶 = 1, 𝑡 = 5, 𝑤 = 4, 𝐿 = 1000 for
the original MAELM, 𝑟 = 20 for MAELM with PCA, and
𝑀 = 2, 4, 6, . . . , 50. The average test accuracy is obtained on
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Figure 5: Performance of ELM and MAELM under the same
training set and test set.

20 trials randomly generated training set and test set. Yale
dataset is used for the experiment. The result is presented in
Figures 6 and 7.

From Figure 6, it is obvious that as the 𝑀 increases, the
generalization performance also becomes better. However,
the trend becomes slower as𝑀 increases. From Figure 7, one
can conclude that as the 𝑀 increases when 𝑀 is small, the
performance decreases a little, while𝑀 becomes larger after
25; the performance also becomes better, although the trend is
not so stable as the original MAELM.This situation indicates
that in real-world applications, 𝑀 does not need to be very
big. Good generalization performance can be obtained by
setting𝑀 less than 30 in the algorithm of original MAELM,
which achieves better than MAELM with PCA under the
same situation.

4.4. Better Generalization Performance Than ELM. In this
part, experiments are done both in Yale and ORL datasets.
The experiments set the parameters of those algorithms as
follows: 𝐶 = 1, 𝐿 = 1000, 𝑡 = 5, 𝑀 = 20 (MAELM), and
𝑟 = 20 (PCA). The experiments take 3 × 3, 4 × 4, 5 × 5, 6 × 6,
and 7 × 7 windows into consideration, which means setting
𝑤 = 3, . . . , 7. The average testing accuracy is obtained on 20
trials randomly generated training set and test set.

The experiment indicates that MAELM has better gener-
alization performance both in Yale and ORL datasets under
different window sizes. See Figure 8 for details, while in
Figure 9, it is obvious that ELM with PCA has much better
performance both in Yale and ORL datasets under different
window sizes. In addition this algorithm keeps more stable
than any other algorithms both in Yale and ORL datasets.

4.5. The Performance in PCA. After seeing all these exper-
iments, we can conclude that although MAELM with PCA
performs not so well as the original one, ELM with PCA

performs much better than before, especially in the experi-
ment in Section 4.2. It is obvious that the performance of the
experiments with PCA is just between the original ELM and
MAELM.

What ismore, since the original ELM randomly generates
the weights between the input layer and the hidden layer, as
well as the bias of the activation function, its performance is
not so stable. The proposed algorithm with PCA successfully
reduces the instability which is very important in the real
world.

Although PCA improves the performance of ELM in a
certain degree, it still could not reach the ability of MAELM
with random weights and bias. Finally, it comes to the result
that the proposed algorithm namedMAELMperformsmuch
better in solving the multiclass classification problem.

5. Discussion

5.1. Complexity Comparison. Very similar to MAELM, the
DAEELM [8] also considers taking the ELM as the weak clas-
sifier and implements AdaBoost as the ensemblemethod.The
difference is that MAELM implements multiclass AdaBoost
which can be directly used in multiclass classification
problem, while DAEELM implements dynamic ensemble
AdaBoost [23], which aims to solve the binary classification
problem.

Many methods have been developed to apply binary
classifier to multilabel problem. One-against-all (OAA) [24]
and one-against-one (OAO) [25] are mostly used. For a
𝐾-class classification problem, under OAA condition, 𝐾
classifiers have to be trained. Each of them separates a
single class from all the remaining classes. Under the OAO
condition, 𝐾(𝐾 − 1)/2 classifiers have to be trained. Each of
them separates a pair of classes.

Suppose that both MAELM and DAEELM have 𝑀

iterations. For a𝐾-class classification problem,MAELMonly
needs to train 𝑀 ELMs, while DAEELM needs to train
𝑀 × 𝐾 and (𝑀 × 𝐾 × (𝐾 − 1))/2 classifiers for OAA and
OAO condition, respectively. Although DAEELM may stop
the iteration earlier, it is obvious that, in theory, MAELM’s
computation complexity ismuch lower thanDAEELM for𝐾-
class classification problem, especially when 𝐾 is a very big
number.

The authors of DAEELM have not published its codes
and DAEELM has its own arguments which MAELM does
not have. DAEELM also does not provide details of how it
trains weighted data with ELM, so it will be unfair to compare
the performance of MAELM and DAEELM. However, the
conclusion that MAELM is much faster than DAEELM in
multiclass classification problem can be drawn from the
complexity analysis above.

5.2. Train ELM with Weighted Data. Section 3.1 has men-
tioned that training ELMwith weighted data is a key problem
when applying AdaBoost. However, [8, 9] did not mention
the key point at all.

Toh in [26] first applied ELM to classify imbalanced data
with two classes. ELM tries to minimize the training error of
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Figure 9: Performances in Yale and ORL.

the data while the proposed algorithm tends to minimize the
total error rate (TER), which takes the weights of the positive
and negative data into consideration.

In Section 3.1, the weighted ELM is applied in MAELM.
Actually, the weighted ELM is inspired and in a way that is
very similar to regularized ELM proposed by Deng et al. in
[27]. The regularized ELM aims to minimize the weighted
training error of the weighted data.

6. Conclusion

This paper proposes a new boosting ELM named MAELM,
which applies the multiclass AdaBoost in ELM ensemble
to directly solve multiclass classification problem. A face
recognition structure combined LBP basedmethod and ELM
is also presented in the paper. What is more, this paper
proposes the way in which ELM combined with PCA instead
of using random weights between the input layer and the
hidden layer, as well as the bias of the activation function.

Experiments in LBP based face recognition will show the
stable and good performance in a certain degree. Although
PCA improves the performance of ELM, it still could not be
better than MAELM with random weights and bias. Experi-
ments show that in LBP based face recognition problem, the
recognition result ofMAELM ismore stable than the original
ELM and better than any other algorithms listed in the paper.

Finally, it comes to the result that the proposed algorithm
named MAELM, which applies the multiclass AdaBoost in
ELM and combines with LBP method, performs much better
in solving the multiclass classification problem.

Also, MAELM is compared with DAEELM in multi-
class classification problem in theory, which indicates that
MAELM has much lower computation complexity than
DAEELM. Moreover, this paper makes the problem how to
train weighted data by ELM clear.
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