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In this paper, we try to evaluate which detector and descriptor may be the most appropriate solution in
stereo visual odometry and whether there is any bias on calculation methods in visual odometry
applications. We summarize the state of art feature detectors and descriptors in visual odometry field
and divide them based on their implemented details. We present three new evaluation criterions
(Detection Chain Repeatability, Average Detection Chain Re-projection Error and Matching Chain Precision)
of feature detectors and descriptors. We also design experiments to evaluate the performance of different
detectors and descriptors from the robustness, precision and cost of computation.
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1. Introduction

Feature detection and matching from images are hotspots in
computer vision and robotics, and have been successfully imple-
mented in many fields such as object recognition, 3D reconstruc-
tion, image retrieval, and camera localization etc. Recently,
researchers have paid much attention on developing proper
detectors and descriptors in visual odometry applications.

Visual odometry [1] is an important technique in robotics and
assistance–driver systems, it can estimate the motion from the
videos obtained by a single camera or multiple cameras.
The motion between two consecutive frames is estimated from
corresponding feature points in these two frames. The first step is
to detect features in both frames with an interest point detector.
Ideally, the detected features are the projections of the same 3D
world points. In the second step, a feature descriptor is used to
represent the detected features in a distinctive way. Correspon-
dences are then obtained by using a matching strategy that
compares feature descriptors based on a similarity measurement.
During that process, the biggest challenge is data association,
which means associate those feature points projected from
a common world point in successive frames correctly. It is
important that the features should be stable under the changes
of lighting and viewpoint; it also should be distinctive and fast to
13 Published by Elsevier B.V. All r
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compute so that features in successive frames can be tracked
correctly by matching with descriptors.

Given the challenge on data association, the remaining ques-
tion is which detector and descriptor is the most appropriate to
estimate the accurate motion in visual odometry. Because there
are varied calculation methods with respect to detectors and
descriptors, whether the detectors and descriptors are in
depended in visual odometry and whether there is any bias on
calculation methods in visual odometry applications are all worth
researching. As the monocular vision system is subject to scale
uncertainty, in this work, we focus on detectors and descriptors
implemented in stereo visual odometry.

The evaluation of the detectors and descriptors are performed
in the standard framework of stereo visual odometry with differ-
ent real world data sets. We have selected a number of detectors
and descriptors which have previously shown a good performance
in visual odometry, some newly detectors and descriptors are also
selected to compare with the popular approaches using the same
evaluation framework and data sets. The key problem in stereo
visual odometry may quite different from the applications such as
image mosaic, object recognition and image retrieval etc., thus the
previous evaluation criterions [2–5] designed for image based
applications may not be proper. And how to design the criterions
suited for visual odometry is still an open challenge. In our
evaluation, we design several new criterions, which are all con-
centrated on the challenge of data association on visual odometry.

The following sections are organized as follows: Section 2,
we present a state of the art on detectors and descriptors
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implemented in visual odometry applications and the related
performance evaluation works. Section 3 presents the detailed
stereo visual odometry framework in our evaluation. Sections 4
and 5 introduce the implementation details of detectors and
descriptors evaluated in our experiments respectively. Section 6
presents our evaluation criterions and the experimental results.
Finally, we conclude in Section 7.
2. Related works

To the present days, different combinations of detectors and
descriptors have been used for stereo visual odometry.
For example, Nister [1] used Harris corner detector [6] to find
interest points in images and described them with a patch of
image pixels centered at the detected points in monocular and
stereo visual odometry. Gabor features and Haar features [7–9] are
early important features in the field of computer vision and are
widely used in object recognition fields. More recently, FAST [10]
criterion for interest point detection has become increasingly
popular in state-of-the-art methods with hard real-time con-
straints, and then AGAST [11] extended FAST with a better
performance. Mei [12] used FAST in stereo visual SLAM. In
recently, the BRISK [13], which combines FAST, AGAST, scale filter
and can be regarded as a multiple-scale FAST corner detector, has
been introduced. Besides corners, another most intuitive local
feature is blob. Lowe [14,15] presented the scale-invariant feature
transform (SIFT) detector and a descriptor scheme, which was
initially applied to object recognition applications. SIFT uses scale-
space approaches to achieve the desired scale invariance. First
successful case of using SIFT features in a stereo odometry frame-
work has been described by Se et al. [16]. SIFT is very popular and
has been also widely applied in other computer vision fields such
as image matching [17,18], image retrieval. SIFT detector uses
difference of Gaussians (DoG) and the descriptor is based on
gradient histograms with a 128-vector. They are relatively slow
to compute. This can be a drawback for real-time applications such
as visual odometry. PCA-SIFT [19] reduced the dimension of
descriptor from 128 to 36 in compromising, however its lower
distinctiveness and time-increasing in descriptor formation which
almost annihilates the acceleration of matching speed. HOG is
gradient histogram feature, similar to SIFT, and used widely in
human detection [20–22]. Bay et al. [23] presented the SURF
detector and descriptor, which was proved to be much faster than
SIFT. Pang et al. [24] presented the FAIR-SURF which is an affine
invariant version of SURF descriptor. Agrawal al et. [25] applied a
center-symmetric local binary pattern as an alternative to SIFT's
orientation histograms approach and used CensurE feature in large
scale visual odometry for rough terrain. The most recent BRIEF
[26] is designed for super-fast description which is a brightness
comparison descriptor using simple binary tests between pixels in
a smoothed image patch. As BRIEF is not scale invariance, it is
sensitive to the large in-plane rotations and scale changes. To solve
the disadvantages of BRIEF, Stefan et al. [13] presented the BRISK
descriptor.

In the context of object recognition and image retrieval, many
authors have presented their works evaluating interest point
detectors and descriptors. A performance comparison among
interest point detectors under scale invariance, viewpoint, lighting
and manual noise conditions is carried out in [3]. Mikolajczyk et al.
[4,27] have evaluated the affine based interest point detectors.
Moreels and Perona [5] presented a performance evaluation
addressed on interest point detectors of 3D objects. Performaces
of detectors is evaluated by the repeatability rate, i.e., the percen-
tage of points simultaneously present in two images. A higher the
repeatability rate between two images will represent that more
points can potentially be matched and the results of matching and
recognition will be better. Carneiro and Jepson [28] evaluated the
performance of feature descriptors using ROC (Receiver Operating
Characteristics). Mikolajczyk and Schmid [2] compare the perfor-
mance of descriptors computed for local interest regions. Their
evaluation uses a criterion recall with respect to 1-precision and is
carried out for different image transformations. Recall is the
number of correctly matched regions with respect to the number
of corresponding regions between two images of the same scene.
The number of false matches relative to the total number of
matches is represented by 1-precision. Local descriptors have also
been evaluated in the context of texture classification [29,30].

Currently, the researches on performance evaluation of detec-
tors and descriptors are almost focused in the context of the object
recognition, image retrieval and texture classifying, and there are
less work (or even ignored) focusing on the performance evalua-
tion of real-time video applications. For visual odometry as a real-
time video system, accuracy of feature localization and computa-
tion cost are crucial. Different from matching image applications
with large viewpoint changes such as panorama stitching, object
recognition and image retrieval, visual odometry is a video
sequence matching between the successive frames. The challenge
problem of detectors and descriptors in visual odometry is not
focusing on the single criterion of change of viewpoint, lighting, or
repeatability rate of image pairs; however, it may concern the
assembly of varied factors, which will make influences on the
estimation of motions, in the sequence of video. Thus the criter-
ions and image dataset used in previous performance evaluation
approaches may be not suitable for stereo visual odometry.
3. Stereo visual odometry

Before we evaluate the different detectors and descriptors
implemented in stereo visual odometry, a general workflow for
stereo visual odometry should be introduced. In stereo visual
odometry, the vehicle or robot equip a stereo camera system
whose intrinsic parameters and rigid relative pose are known, the
goal of stereo visual odometry is to precisely estimate the global
6D orientation and position of the system at each stereo frame.
The system estimates incrementally; in each new frame, it does
the following processes:
(1)
 Performing epipolar rectification for each stereo image.

(2)
 Extracting features from each new frame in the left image.

(3)
 Obtaining corresponding feature points in the right image by

standard stereo method, and then calculating the 3D location
relative to the present frame.
(4)
 Extracted features in the left images are matched with features
in previous left image.
(5)
 From these uncertain matches, we exclude outliers and obtain
a consensus estimation of motion using RANSAC and PnP
motion estimation method on three points [28].
(6)
 Refinement via incremental sparse bundle adjustment is used
to polish the solution.
3.1. Motion estimation between frames and outlier rejection

The relative poses (the rotation matrix R and the translation t)
between the consecutive frames, as shown in Fig. 1, can be
calculated using Absolute Orientation (AO) methods or
Perspective-n-Point (PnP) methods [31]. In this paper, we exclude
outliers and obtain a consensus estimation of motion using
RANSAC and three points PnP motion estimation method [32],
which has been proved the most accurate PnP motion estimation
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Fig. 2. Matching chains and sequence motion refinement.
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method [31]. The RANSAC samples three points repeatedly to
estimate the motion model and exclude outliers according to
that model.
3.2. Sequence motion refinement

During the motion estimation from consecutive frame pairs
with matched features, matched features are linked in multiple
frames through consecutive pairs of images. Fig. 2 shows the
process. The linked feature points are corresponded to the same
point in real world, thus the sparse bundle adjustment [33] can
process the information from several successive stereo images. The
matching chains along the images can be seen as constraints that
have to be regarded in the estimation. Then the sparse bundle
adjustment can achieve more accurate results compared with two-
frame estimation.

Each camera projects Xj to xij¼PiXj, xij is the image homograph
coordinate of the jth world point in the ith image. In order to
obtain best projection matrices Pi and world coordinates Xj, we
minimize the summed squared re-projection error

min
Pi ,Xj

¼∑
i,j
dðPiXj,xijÞ

The position and orientation of each camera are contained in
the projection matrixPi. To refine the pose estimates and achieve
real-time performance, we use a local (or incremental) sparse
bundle adjustment approach [31,34–37].
Fig. 3. Box filters as used by Fast Hessian as approximations to second order
derivatives of Gaussians.
4. Interest point detectors

In this section, we will give a brief introduction on the state-of-
the-art detectors, which have been implemented in visual
odometry system, e.g. Harris in [1,31,38], SIFT in [16,39], SURF
in [40], FAST in [6,11], CenSurE in [8]. And there are also the
newest detectors presented recently, which may be used in visual
odometry, e.g. AGAST and BRISK.
4.1. Harris corner detector

The Harris corner detection algorithm, proposed by Harris and
Stephens [6], is probably one of the most popular corner extraction
methods, and is also firstly used in stereo visual odometry. The
Harris detector is based on the second moment matrix which is
often used for feature detection and for describing local image
structures. This matrix describes the gradient distribution in a
local neighborhood of a point

M¼∑
u
∑
v
Wðp,qÞ

I2x IxIy

IxIy I2y

2
4

3
5

W denotes the Gaussian weight filter. Harris then defines the
corner response to be

C ¼DetðMÞ−k⋅TrðMÞ2

with Det(M) the determinant and Tr(M) the trace of the matrix M.
A typical value for k is 0.04.

When used as an interest point detector, local maxima
of the cornerness function are extracted using non-maximum
suppression.

4.2. Difference of Gaussians (DoG, SIFT-detector)

Lowe proposed a Scale Invariant Feature Transform (SIFT)
detector/descriptor scheme [14,15]. The descriptor will be intro-
duced in Section 5.3. SIFT Interest points that are invariant to scale
and orientation are extracted with a Difference of Gaussian (DOG)
detector. The scale-space of an image Lðx,y,sÞ is produced from the
convolution of the input image with a variable-scale Gaussian. The
differences of Gaussian is calculated as follows:

Dðx,y,sÞ ¼ Lðx,y,ksÞ−Lðx,ysÞ
Sample points are compared with its eight neighbors in current

image and nine neighbors in the adjacent scales and selected as a
potential interest point if it is larger or smaller than all of these
neighbors. The interest point locations are then refined to sub-
pixel accuracy using the quadratic Taylor expansion of the DoG
scale-space function.

4.3. Fast Hessian (SURF-detector)

The Fast-Hessian detector is used in the SURF detector-
descriptor scheme proposed by Bay et al. [23]. The SURF descriptor
will be introduced in Sect. 5.4. The Hessian matrix at scale s is
defined as follows:

Hðx,y,sÞ ¼
Ixxðx,y,sÞ Ixyðx,y,sÞ
Ixyðx,y,sÞ Iyyðx,y,sÞ

" #

with Ixx etc. second order Gaussian smoothed image deriva-
tives. Bay et al. used simple box filters, as shown in Fig. 3, to
approximate convolution with the Gaussian second order
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derivatives. So box filters can be computed in constant time using
the integral image. The approximate determinant of Hessian
matrix then is

Det½Hðx,y,sÞ�≈DxxDyy−ð0:912DxyÞ2

Here Dxx, Dxy and Dyy are the results of the image convoluted
with box filters. Finally, 3x3�3-neighborhood non-maximum
suppression and sub-pixel refinement are then applied.
4.4. Center-surround extrema (censure)

CenSurE (Center Surround Extremas) [25] approximates the
Laplacian with the centered surround filters which are designed in
the forms of octagons, hexagons or boxes. We use the star-version
which is also referred to as the Star Keypoint Detector in OpenCV.
The filters are shown in Fig. 4. Agrawal et al. propose the use of
slanted integral images for octagons, hexagons and star. All the
filters can be computed rapidly with integral images. The center-
surround filter is computed at all locations and scales and then
local extrema in a neighborhood can be found.
4.5. Features from accelerated segment test (FAST)

The FAST (Features from Accelerated Segment Test) feature
detector, proposed by Rosten and Drummond [10], is very fast to
compute. So FAST criterion for interest point detection has become
increasingly popular in state-of-the-art methods with hard real-
time constraints. A feature is detected at pixel p if the intensities of
at least 9 contiguous pixel of a surrounding circle of 16 pixels are
all below or above the intensity of p by a threshold t, as shown in
Fig. 5. The algorithm was further accelerated by training a decision
tree to test as few pixels as possible for classifying a candidate
pixel as corner or non-corner. Since the segment test does not
compute a corner response function, non-maximal suppression
cannot be applied directly to the resulting features. Consequently,
a score function, V must be computed for each detected corner,
and non-maximal suppression applied to this to remove corners
which have an adjacent corner with higher V. V is given by:

V ¼maxð ∑
x∈Sbright

���Ip-x−Ip
���−t, ∑

x∈Sdark

���Ip−Ip-x

���−tÞ
Fig. 4. CenSurE's Bi-Level filters.

Fig. 5. FAST feature detection: the highlighted squares are the pixels used in the
feature extraction.
4.6. AGAST (Adaptive and generic accelerated segment test)

AGAST was proposed by Mair et al. [11] is a highly efficient
corner detector based on the same corner test as FAST. AGAST
approach only the way the decision trees for the accelerated
segment test are built and used has been significantly improved.
AGAST uses also the same non-maximum suppression as FAST.

Unlike FAST, AGAST detector does not have to be trained for
a specific scene, but it dynamically adapts to an arbitrary scene
which makes the accelerated segment test generic.

FAST computes the decision tree by learning the distribution of
the corner configuration from a training set of a specific environ-
ment, the result can be quite suboptimal and some corner
configurations may be missing in the training set which leads to
false positive and false negative responses of the corner detector.
In AGAST, the optimal trees are found by exploiting the full binary
configuration space. The tree is optimal for a certain probability of
similar pixels in the accelerated segment test mask.

AGAST increase the performance of the accelerated segment
test and is the currently most efficient corner detection algorithm
to our knowledge.
4.7. BRISK (Binary robust invariant scalable keypoints)

The BRISK was proposed by Stefan. et al. [13], and able to
achieve invariance to scale by searching for maxima not only in
the image plane, but also in scale-space using image scale filters,
AGAST detecting strategy, and the FAST scores as a measure for
saliency. The BRISK estimates the true scale of each interest point
in a continuous scale-space. In order to evaluate effect of multi-
scales on visual odometry performance, we used especially BRISK
(0) detector which the value of octaves parameter is 0 in experi-
ment evaluation. Table 1 shows summarizes of the detectors.
5. Local descriptors

We will also introduce the state-of-art descriptors implemen-
ted in stereo visual odometry systems, e.g. SAD in [12,41], NCC in
[1,31,38], SURF in [40] and SIFT in [16,39]. Although the descriptor
of BRISK is not implemented in visual odometry yet, we will
employ it as a potential optimal descriptor in our evaluation due to
its impressive performance in both the accuracy and cost of
calculation.
5.1. SAD

In Sum-of-absolute-differences (SAD) approach, the corre-
sponding pixels from two image patches I1and I2 with the same
size M by N are subtracted pair wise and the absolute difference of
their grey values is summed up

SAD¼ ∑
M

m ¼ 1
∑
N

n ¼ 1
absðI1ðm,nÞ−I2ðm,nÞÞ
5.2. NCC

NCC (normalized cross-correlation) is more complicated than
SAD, but is supposed to offer more robustness to lighting and
contrast changes. For two image patches I1and I2 with the same



Table 1
Summarizes of the detectors.

Harris FAST AGAST BRISK(0) BRISK SIFT SURF CenSurE

Scale invariance No No No No Yes Yes Yes Yes
Feature type Corner Corner Corner Corner Corner Blob Blob Blob

Image gradients Interest point descriptor

Fig. 6. A 2�2 descriptor array computed from an 8�8 set of samples.
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size M byN, NCC can be expressed as

NCC ¼
∑
M

m ¼ 1
∑
N

n ¼ 1
I1ðm,nÞI2ðm,nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
M

m ¼ 1
∑
N

n ¼ 1
I21ðm,nÞ ∑

M

m ¼ 1
∑
N

n ¼ 1
I22ðm,nÞ

s :
Fig. 7. BRISK sampling pattern with N¼60 points.
5.3. SIFT (Scale invariant feature transform)

SIFT descriptor [14,15] is a 3D histogram of gradient location
and orientation. The magnitudes are weighted by a Gaussian
window withsequal to one half the width of the descriptor
window. These samples are then accumulated into orientation
histograms (with eight bins) summarizing the contents over 4�4
sub-regions. The feature vector contains the values of all orienta-
tion histograms entries. With a descriptor window size of 16�16
samples leading to 16 sub-regions the resulting feature vector has
16�8¼128 elements. Fig. 6 shows the computation of the interest
point descriptor.

5.4. Speeded up robust features (SURF)

The SURF descriptor [23] encodes the distribution of pixel
intensities in the neighborhood of the detected feature at the
corresponding scale. To extract the SURF-Descriptor, the first step
is to construct a square window of size 20s (s is scale) around the
interest point oriented along the dominant direction. The window
is divided into 4�4 regular sub-regions. Then for each sub-region
the values of ∑dx,∑dy,∑jdxj,∑jdyj are computed, where dx and dy
refer to the Haar wavelet responses in horizontal and vertical
directions in relation to the dominant orientation. This leads to an
overall vector of length 4x4�4¼64. If the rotational invariance is
not required, the upright version of the descriptor, called U-SURF,
can be used.

5.5. BRIEF (Binary robust independent elementary features)

Calonder et al. proposed BRIEF descriptor [26], which used
binary strings as feature point descriptor. It is highly discrimina-
tive even when only using relatively few bits and can be computed
using simple intensity difference tests. Furthermore, the descriptor
similarity can be evaluated using the Hamming distance, which is
very efficient to compute, instead of the L2 norm distance as is
usually done. So, BRIEF is very fast both to build and match.

Consider a smoothed image patch, p. A binary test τ is defined
by

τðp; x,yÞ ¼ 1 if pðxÞopðyÞ
0 otherwise

�

p(x) is the intensity of p at a point x. Choosing a set of nd(x, y)
location pairs uniquely defines a set of binary tests. BRIEF
descriptor is a nddimensional bitstring

f nd
ðpÞ ¼ ∑

1≤ i ≤nd

2i−1τðp; xi,yiÞ

There are multiple distributions of tests considered in [26],
here we use one of the best performers, a Gaussian distribution
around the center of the patch.

5.6. BRISK descriptor

The BRISK descriptor [13] is also composed as a binary string by
concatenating the results of simple brightness comparison tests
like BRIEF. The key concept of the BRISK descriptor makes use of a
pattern used for sampling the neighborhood of the interest point.
BRISK carefully select the brightness comparisons with the focus
on maximizing descriptiveness. The pattern, illustrated in Fig. 7,
defines N locations equally spaced on circles concentric with the
interest point.

For the formation of the rotation- and scale-normalized
descriptor, BRISK applies the sampling pattern rotated by θ around
the interest point k. θ is the orientation of interest point. The



Table 2
Summarizes of descriptors.

SAD NCC SIFT SURF U-SURF BRIEF BRISK U-BRISK

Rotation invariance No No Yes Yes No No Yes No

Descriptor type Image patch
pixels

Image patch
pixels

Gradient
histogram

Gradient
histogram

Gradient
histogram

Brightness
comparison

Brightness
comparison

Brightness
comparison

F0 F1 F2 FN…
m1 m2 mNm3

a a a
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bit-vector descriptor is assembled by performing intensity compar-
isons of point pairs. If the rotational invariance is not required, the
upright version of the descriptor, called U-BRISK, can be used.

Table 2 shows summarizes of the descriptors.

1 2 N

Fig. 8. Chain for the detected feature points and matched points with N frames
6. Evaluation and experiments

6.1. Evaluation criterion

In visual odometry system, the stereo cameras may only detect
few corresponds or even some wrong corresponds and will lead to
failure in motion estimation due to the quick movement of robots
or vehicles. In general, those feature points, which can satisfy the
homography projection constrained by the correct estimation of
translation and rotation, is called inliers. An intuition evaluation
criterion for the performance of stereo visual odometry is the
percentage of inliers in all the detected feature points and matched
points, which can be used to evaluate the performances of
detectors and descriptors, especially when there are notable
changes on the scales, viewpoints and image blurring or distortion
caused by the fast moving vehicles.

As the detector and descriptor are different phrases in stereo
visual odometry, they should be considered independently, we
then present their criterions on percentage of inliers as follow:

We define percentage of detected inliers as

PD¼ the numbers of detected inliers
the numbers of detected feature points

In experimental, it is easy to fail to estimate the motion when
the percentage of detected inliers is lower than 5%, so we regard it
as detection failure once the percentage of detected inliers is lower
than 5%. Then the rate of detection failure will indicates the
robustness of the feature detection methods directly in stereo
visual odometry.

We define percentage of matched inliers as

PM¼ the numbers of matched inliers
the numbers of matched points

According to experimental analysis, the feature matching failure
is defined as the percentage of matched inliers is lower than 20%,
which may often fail to estimate motions. Then the rate of
matching failure will indicates the robustness of the feature
matching methods directly in stereo visual odometry.

In visual odometry, the corresponding feature points in every
two neighbored frames are continuous associated to form a chain,
shown in Fig. 8. Fi is the ith frame of the image sequence, ai is the
set of detected feature points in frame i, mi is the set of matched
feature points between frame i and frame iþ1, bi is the set of
corresponding detected inliers between frame i and frame iþ1, as
the inliers contained in the set of detected feature points may not
be correctly matched into the matched inliers set, we use di to
present the set of corresponding matched inliers between frame i
and frame iþ1.

The feature corresponds along that chain may be the most
important parameters in visual odometry, the performances of
motion estimation in visual odometry are almost determined by
the quality of that chain. So we present three new criterions based
on the chain.
(1)
 Detection Chain Repeatability (DCR)

DCR¼
∑
N

i ¼ 1
CðbiÞ

∑
N

i ¼ 1
CðaiÞ

⋅
∑
N

i ¼ 1
CðbiÞ

N⋅CðWðb1∪b2∪:::∪bNÞÞ

Here, N is the number of frames, C(bi) will return the number
of points in set bi.W(Q) is a function that can return all the real
world points corresponding to each point in Q, that is,
WðQ Þ ¼ ∪pj∀q∈Q ,q¼ PðpÞ� �

, P(m) is a projection function,
which projects the point of real world, m, into the image
coordinate with the homography matrix.
The DCR is a parameter less than 1, and a larger DCR will
represent that there are more points are correctly detected in
that chain, and after executing the sparse bundle adjustment,
it will achieve more accurate estimation results in visual
odometry.
(2)
 Average Detection Chain Re-projection Error (ADCRE)

ADCRE¼ ∑jjPR,tðWðbiÞÞ−bijj

∑
N

i ¼ 1
CðbiÞ

The ADCRE calculates the average re-projection error for each
detected feature points to evaluate the detection accuracy in
visual odometry.
(3)
 Matching Chain Precision (MCP)

MCP¼
∑
N

i ¼ 1
CðdiÞ

∑
N

i ¼ 1
CðmiÞ

⋅
∑
N

i ¼ 1
CðdiÞ

N⋅CðWðd1∪d2∪:::∪dNÞÞ

Similarly, a MCP could be calculated to see how matched
features are correct inliers.
During the evaluation of detectors in stereo visual odometry
system, we adopt a two-phrase method to minimize the affect
of descriptors:
(1)
 Estimation the motions with method introduced in Section 3.
To achieve accurate motions, we iterate the RANSAC as much as
possible and optimize the R, t by the sparse bundle adjustment;
(2)
 With the accurate geometric constraints between two pairs of
stereo images, we test each feature point-pairs whether they
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can fulfill the geometric constraints, the inliers will satisfy the
following equation:
jm−PðRXþtÞjoτ,m¼ ðu,vÞT , τ is a non-negative threshold.
During the evaluation of descriptors, we implement a hybrid

detector method to obtain the original feature points for matching,
that is to use three high performance detectors, i.e. SIFT, BRISK0,
CenSurE to detect the original feature points and extract 1/3 of the
best detected features from each detector to construct our hybrid
based detected feature points. We use the nearest-neighbor
matching to search the matched descriptors, and the calculation
for matched inliers is similar with the detected inliers, it also
employs the two-phrase method, the only different is only those
matched feature points are used to verify their geometric
constraints.

The error of localization must be the most useful criterion in
motion estimation, so we also evaluate the relationships of
different detectors and descriptors with the localization error in
stereo visual odometry. Localization error measures the error
between estimated position in stereo visual odometry and true
position. It is a comprehensive criterion to represent performances
of detectors and descriptors, because accuracies of feature detec-
tion and descriptor matching, the number of inliers will all affect
the localization error in stereo visual odometry.
Fig. 9. Large image deformations
The sample iterations in RANSAC may be another interested
criterion to evaluate the performance of descriptors. The iteration
number of RANSAC indicates how easily RANSAC is able to obtain
accurate initial motion estimation and thus it is a direct measure
of time spent for outlier removal.

The detector and descriptors are two essential steps in stereo
visual odometry, to evaluate the detectors and descriptors fairly
and ignore the bias, we use the descriptor with highest MCP when
evaluating different detectors with respect to their localization
errors. When concerning the localization performances of different
descriptors, we choose the detector with highest DCR and lowest
ADCRE to minimize the affect of detectors.
6.2. Experimental data sets

As the stereo visual odometry is mostly implemented in field
robot systems, it is important to evaluate the detectors and
descriptors on data sets gathered from real-world robot platforms.
In our evaluation, three different data sets of stereo frames are
adopted; these data sets are widely used in the benchmark test of
stereo visual odometry algorithms:
(1)
due t
The Oxford New College dataset [42], kindly provided to the
vision research community by the Oxford Mobile Robotics
o the motion of vehicle.



Table 3
Rate of detection failure in large image deformation conditions.

Scale changes Viewpoint changes Image blurring

Harris 7% 6% 14%
FAST 5% 4% 15%
CenSurE 1% 1% 5%
AGAST 4% 3% 11%
SIFT 1% 0 2%
SURF 1% 0 0
BRISK 1% 2% 3%
BRISK(0) 3% 2% 9%

Table 4
Rate of matching failure in large image deformation conditions.

Scale changes Viewpoint changes Image blurring

NCC 65% 55% 89%
SAD 63% 52% 91%
SURF 0 0 1%
U-SURF 0 0 0
SIFT 1% 1% 4%
BRISK 3% 2% 3%
U-BRISK 2% 3% 2%
BRIEF 5% 2% 3%

Fig. 10. Oxford New College dataset 1 and dataset 2: aerial view of location.

Table 5
Detection accuracy of different feature detectors in stereo visual odometry.

DCR ADCRE Closure loop error (m)

Harris 0.41 0.42 1.19
FAST 0.41 0.39 0.74
CenSurE 0.43 0.40 0.72
AGAST 0.42 0.40 0.71
SIFT 0.39 0.36 0.79
SURF 0.39 0.39 0.88
BRISK 0.34 0.35 0.65
BRISK(0) 0.47 0.35 0.53

Table 6
Matching accuracy of different descriptors for stereo visual odometry.

MCP Iteration numbers of RANSACa Closure loop error (m)

NCC 0.27 313 1.55
SAD 0.28 315 1.51
SURF 0.56 92 0.79
U-SURF 0.58 85 0.72
SIFT 0.63 78 0.67
BRISK 0.64 71 0.59
U-BRISK 0.66 70 0.53
BRIEF 0.65 71 0.55

a The terminal condition for the iteration of RANSAC is when there are no more
than 1% outliers removed.
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Group. This dataset comprises a total of 52,478 stereo frame
pairs, collected in about 47 min over a total path length of
about 2844 m. The accurate ground truth is not available.
(2)
 The Amsterdam Hague dataset [39], kindly provided to
the computer vision research community by the Intelligent
Autonomous Systems Group. This dataset comprises Hague1
and Hague2. All data sets are accompanied by DGPS. Hague1
dataset encompass a loop of approx. 600 m, and contain
around 2500 stereo images. Hague2 dataset encompass a loop
of approx. 800 m, and contain around 3000 stereo images.
(3)
 Karlsruhe dataset [43], kindly provided to Andreas Geiger
professor by Institute of Measurement and Control Systems.
The dataset contains high-quality stereo sequences recorded
from a moving vehicle in Karlsruhe. The dataset encompass 16
sub-datasets. The ground truth odometry from an OXTS RT
3000 GPS/IMU system is provided.
1 To evaluate the performance on challenge conditions, we did not extract
continuous image pairs, some middle frames among the pairs are skipped to obtain
the pairs with significant changes on scales and viewpoints.
6.3. Robustness evaluation

As mentioned in previous, there may be three challenges in
feature detection and matching of visual odometry, i.e. significant
changes on scales, viewpoints and blurring images. So we extract a
couple of stereo frame-pairs from data sets introduced in Section
6.2, those pairs1 are all considered to contain the either the
significant changes on scales, changes on viewpoints or image
blurring, as shown in Fig. 9. We then apply the detectors and
descriptors in those selected pairs and calculate the rate of
detection failure and rate of matching failure respectively as follows:

rate of detection f ailure¼ NPDo5%

Ntotal
, rate of matching f ailure

¼ NPMo20%

Ntotal

here NPDo5% is the number of pairs whose percentage of
detection inliers (PD) is less than 5%; NPMo20% is the number of
pairs whose percentage of matching inliers (PM) is less than 20%;
Ntotalis the number of total pairs. The experimental results of
detectors and descriptors are shown in Table 3 and Table 4
respectively.

Table 1 shows the detection failure rate of different feature
detector. From the Table 1, we can see that Harris performs the
worst. Performances of SIFT, SURF, CensurE, and BRISK feature are
similar and SURF is slightly better. BRISK(0) is worse than BRISK.
Image blurring may be the mainly negative factor with respect to
the robustness of feature detectors.

From Table 4, we can see that NCC and SAD are worst with
significant poor performance on robustness. Performances of
SURF, U-SURF, SIFT, BRIEF, BRISK and U-BRISK are comparative
and are very high. The reason may be that SAD and NCC employ
the patch of pixels in computation, which will be quite sensitive to
the changes of scale, viewpoint and image blurring and distortions
and failed to match.



Fig. 11. BRISK (0) features tracked over several frames.

2 We use a laptop with Intel Core2 Duo, T6600, 2.2 GHz CPU, 2 G memories,
and all the detectors and descriptors are implemented with Cþþ.

3 In stereo visual odometry system, it often sets a maximal number of features
in feature detection and matching to make a stable computation in each frame.
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6.4. Precision evaluation

We also use the DCR, ADCRE and MCP to evaluate the perfor-
mances of different detectors and descriptors. In experiments, the
Oxford New College data sets are used, we also use the closure
loop error to evaluation the accuracies of localization with differ-
ent detectors and descriptors. There are two closure loops in the
Oxford New College data sets, shown in Fig. 10. The closure loop
error is calculated as follows: We assume the initial position of the
vehicle is zero, and then estimate the motion of vehicle with the
tested detector or descriptor until it returns to the end, which
should be the same with the initial position in a closure loop
motion. And then we can obtain the error of corresponding
detector or descriptor from the bias of end.

In general, a larger DCR will represent that there are more
available feature points used in the estimation and will lead to
more accurate results in motion, a smaller ADCRE will represent
that the projects of inliers will be more close to the ground true
ones, and the detected features are more accurate. So larger DCR
and smaller ADCRE will lead to less error in localization error (or
closure loop error).

The experimental results of Table 5 show that the BRISK (0) could
achieve the best DCR and lowest ADCRE, and the closure loop error
is also lowest. The closure loop error of Harris is worst. We also find
that the performance of BRISK (0) is better than BRISK, the reason
may be that the octaves of brisk feature are formed by progressively
half-sampling the original image, while half-sampling will decrease
the accuracies of features in motion estimation. Fig. 11 shows the
BRISK (0) features tracked over several frames.

The experimental results on different descriptors are shown in
Table 6. The results show that the performances of brightness
comparison based descriptors may be superior to others, the
performance gradient histogram based descriptors is less than
brightness comparison based descriptors and better the image
patch pixels based descriptors. The results of Table 6 may be
determined by the characteristics of stereo visual odometry: there
are small deformations among two continuous frames, the gradi-
ent histogram based descriptors may suffer with weak distinctive-
ness, but it is strong at anti-deformation; Image patch pixels based
descriptors is good at distinctiveness, but the performance on anti-
deformation is weak; And the brightness comparison based
descriptors are good compromises of the anti-deformation and
distinctiveness, thus they are more proper for the cases of visual
odometry.

The results on Table 6 also show that performances of descrip-
tors with rotation invariance are less than the descriptors with
rotation variance; the reason may be that there are small in-plane
rotations in visual odometry cases, thus the bias on rotation
introduced by calculating the rotation invariance in descriptors
may have more influence on the distinctiveness.

Table 6 also shows the iteration number of RANSAC for
different descriptors. SAD and NCC need the largest iteration, it
shows the SAD and NCC based stereo visual odometries spend
much time on removing outliers.

As the above experimental results suggest the BRISK (0) and
U-BRISK may be the best detector and descriptor respectively, we
also carried out an experiment to compare the trajectory of ground
truth and the results implemented by BRISK (0) and U-BRISK.
Experimental results are shown in Fig. 12. The ground truth
localization information of Oxford New College data sets is not
available, so we only present the closure loop error shown in
Fig. 12(a), (b); Fig. 12(c), (d) show the results on Karlsruhe dataset,
which can provide ground truth localization information.
The results show the approach with BRISK (0) and U-BRISK may
achieve impressive accuracy in localization.
6.5. Executing time evaluation

As the visual odometry is a real-time application, we also
compare the executing time for different detectors and descriptors
using the same hardware and software platform2 . In this experi-
ment, all the detectors and descriptors are implemented to process
the same video sequences with about 100 frames, the resolution of
image is 512�384 and the maximal number of features3 is 550.
We record the average executing time of each detector and
descriptor in one frame. The results are shown in Tables 7 and 8.

The experimental results show SIFT detector spends much
more time in computation than other detectors, and the computa-
tion time of BRISK (0) is approximate to AGAST, which is the faster
detector in experiments.

According to Table 8, the SIFT descriptor spends much more
time in computation than other descriptors, and the calculation
costs of SAD, NCC, U-BRISK, BRISK and BRIEF are approximate. The
experimental results suggest the BRISK detectors and descriptors
may be a proper solution for stereo visual odometry when
considering the robustness, accuracy and executing time in all.



Fig. 12. Localization results of different dataset with BRISK (0) detector and U-BRISK descriptor. (a) Oxford New College dataset 1, (b) Oxford New College dataset 2,
(c) Karlsruhe dataset 1 and (d) Karlsruhe dataset 2.

Table 7
Average run-time of different feature detectors in one frame.

Harris FAST AGAST CenSurE SIFT SURF BRISK BRISK(0)

Time (ms) 15 8 5 22 1640 197 21 6.5

Table 8
Average run-time of different descriptors computing and matching in one frame.

NCC SAD SURF U-SURF SIFT BRIEF BRISK U-BRISK

Time (ms) 10 9 138 93 1225 26 20 15
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7. Discussion and conclusion

In brief, the corner based detectors such as FAST may be a
superior solution in stereo visual odometry projects, for their low
cost on computation. Among those detectors, the BRISK (0) shows
an overall good performance. Generally, the detectors with scale
invariance may be more stable than sample corner detectors, so
they have less failure rate on motion estimation. However, multi-
ple scales based detectors do not achieve better performance
when considering the localization accuracy in visual odometry. It
may because those scale-space features are not well localized at
higher levels in an image pyramid. Obviously, features at high
levels have less accuracy relative to the original image. So the
lower scale in features may lead to more accurate localization
results when considering the kind of features in visual odometry.
Besides, multiple scales based detectors need additional computa-
tion for those scales. So we may use the policy in stereo visual
odometry: the detectors with multiple-scales are adopted only
when there are some extremely motions occurring, in normal
times, the simple detectors such as corner based approaches are
implemented.

The brightness comparison based descriptors are performed
well in overall robustness, precision, and computation, thus are
proper for implementing in visual odometry. The experimental
results also show that the rotation variance descriptors perform
better than those rotation invariance ones. Thus the rotation
invariance descriptors may be not necessary in stereo visual
odometry.
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