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Abstract: Efficient trajectory generation in complex dynamic environments remains an open problem
in the operation of an unmanned surface vehicle (USV). The perception of a USV is usually interfered
by the swing of the hull and the ambient weather, making it challenging to plan optimal USV
trajectories. In this paper, a cooperative trajectory planning algorithm for a coupled USV-UAV system
is proposed to ensure that a USV can execute a safe and smooth path as it autonomously advances
through multi-obstacle maps. Specifically, the unmanned aerial vehicle (UAV) plays the role of a
flight sensor, providing real-time global map and obstacle information with a lightweight semantic
segmentation network and 3D projection transformation. An initial obstacle avoidance trajectory
is generated by a graph-based search method. Concerning the unique under-actuated kinematic
characteristics of the USV, a numerical optimization method based on hull dynamic constraints is
introduced to make the trajectory easier to be tracked for motion control. Finally, a motion control
method based on NMPC with the lowest energy consumption constraint during execution is proposed.
Experimental results verify the effectiveness of the whole system, and the generated trajectory is
locally optimal for USV with considerable tracking accuracy.

Keywords: USV-UAV cooperation; trajectory generation; under-actuated constraint; numerical
optimization; hull dynamics

1. Introduction

Unmanned surface vehicles (USVs) are a kind of specific ships with the ability of
autonomous mission execution, which are widely used in various applications, including
marine resource exploration, water resource transportation, patrol and defense in key
areas and river regulation [1,2]. Progress has been made in a large number of research
areas, including environmental perception [3,4], formation control [5,6], navigation [7,8],
and so on. Environmental perception and trajectory generation are the two most important
techniques when the USVs are executing in unknown environments. In particular, when
the environment contains dynamic obstacles, USVs struggle to achieve accurate trajec-
tory planning and tracking due to the lack of effective obstacle information. As a result,
the autonomous navigation system may fail.

During the navigation process of a USV, the sensing devices, such as radar or camera,
are located at a low observation point, which is detrimental to environmental perception
because the adjacent obstacles in the front and behind will block each other. Moreover,
the input of the sensors often contains noise caused by hull shaking on the water. This
makes precise environmental perception a difficult problem for USVs and affects the success
rate of trajectory generation. Usually, simultaneous localization and mapping (SLAM) [9]
technology is required to construct the global map. However, this kind of method requires
a huge computational load, and it is intractable to deal with dynamic objects in the water
environment.
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A feasible solution is to design a USV-UAV cooperative system to tackle the above
problems, where the unmanned aerial vehicle (UAV) plays the role as a flying sensor. As
shown in Figure 1, the USV has long cruise capability, but its perception is disturbed
and limited by the circumstance. Hence the UAV flies over the USV, providing more
stable and comprehensive information. Semantic segmentation [10,11] and 3D projection
are used in this paper to transfer obstacle information in the field of vision of the UAV
to the coordinate system of the USV. Semantic segmentation extracts pixel information
of environmental obstacles, and a camera projection model helps to transfer the pixel
information to 3D information. By doing this, global map information around the USV can
be obtained efficiently and in real-time, implying the USV-UAV cooperative system can
improve the perception ability of the USV effectively, allowing the USV to perform tasks in
more complex water circumstances.

Figure 1. An illustration of the USV-UAV cooperative system, where the UAV provides wide obstacles
and map information to guide the USV to generate an obstacle avoidance trajectory.

An initial obstacle avoidance trajectory is firstly generated by a graph-based search
method [12]. However, such a method was originally designed for path searching on vast
geographical scenarios, which does not consider the USV’s dynamic characteristics. On the
other hand, USV is famous for its under-actuated motion characteristics [13], which makes
it hard to be controlled well, even when an optimal trajectory is planned. In this paper, we
design a numerical optimization method to optimize the trajectory. Specifically, we take
the hull dynamic constraints into account when modeling the optimization problem. As a
result, the generated trajectory not only allows the obstacle avoidance rule, but also fits the
motion characteristics of a USV. This makes the generated trajectory easier to be tracked
under the same control conditions.

Finally, a control method with the lowest energy consumption per execution task
is designed under a new numerical optimization problem. It ensures that the power
consumption is optimal when the USV is actuated to track the given optimal trajectory,
which is a very useful technique in real-world applications. The performance of the
trajectory generation and tracking is comprehensively compared and analyzed in the
simulated environments, and it verifies the effectiveness of our proposed novel framework.

In summary, the contributions of this paper are listed as follows.

• A novel USV-UAV cooperative system is proposed, where the UAV acts as a flying
sensor to provide global map information around the USV by semantic segmentation
and 3D projection, providing more comprehensive and effective perception results for
navigation planning.

• A numerical optimization problem is formulated during the trajectory generation
process. It considers the hull under-actuated dynamic constraints and perception of
the UAV, which can generate a fuel-saving trajectory in real-time optimization.
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• The lowest energy consumption control law is proposed to track the generated trajec-
tory efficiently and accurately, and extensive experiments are conducted to verify the
effectiveness of the USV-UAV cooperative system.

2. Related Works
2.1. Trajectory Planning for USV

Trajectory planning aims to automatically generate an obstacle avoidance trajectory
for a USV when the local or global map is given. Among existing methods, the mainstream
trajectory planning methods are mainly divided into two categories, i.e., path search and
trajectory generation.

There are two research directions for the path search methods, including graph search
and random sampling. Typical graph search methods include the A* [14] and Dijkstra [15]
algorithm, as well as their derivatives [16]. These methods mainly discretize the known
map into interconnected grids and find the shortest path according to the heuristic param-
eters. The disadvantage of this kind of method is that the search dimension in the large
map is expanding, and the calculation time shows a rapid upward trend. Among random
sampling methods, typical varieties include RRT [17] and its derivatives [18], which dy-
namically find feasible paths by randomly sampling points in the map and constructing
random exploratory trees. The method can show better performance for large maps, but its
shortcomings are also very obvious. It is easy to be guided to a locally optimal solution,
and it is difficult to generate feasible paths in narrow areas when system’s computing
resources are limited. The common problem of the above methods is that the generated
path curvature is discontinuous, and trajectory smoothing is needed afterward.

For the trajectory generation methods, curve interpolation methods, such as B-spline [19],
are commonly used to smooth the trajectory. The smoothness of the trajectory and motion
state is guaranteed by the continuity theorem of higher-order derivatives of a curve. Mean-
while, numerical optimization methods are also widely used, such as minimum snap [20]
and near-optimal control [21].

Some methods can also combine path search with trajectory generation, such as
domain reduction-based RRT* [22] and Hybrid A* [23]. In this paper, the proposed method
belongs to the numerical optimization method . It adds the dynamic and kinematic
constraints of unmanned craft in the trajectory generation part so that the generated
trajectory is more in line with the dynamic characteristics of the hull.

2.2. The USV-UAV Cooperative System

With the rapid development of automation and artificial intelligence technology, un-
manned aerial vehicle (UAV) technology has made significant progress in recent years.
Compared with USV, the advantage of UAV is that it has a broader field of vision and faster
movement speed and can provide more comprehensive and effective data information for
USV. In addition, UAV has the advantages of flying height and that its communication
ability is less affected by the environment. It can be used to provide communication relay
services for multiple USVs located in different positions. Due to the strong complemen-
tarity between USV and UAV in perception, communication, operation time, and other
aspects, researchers have focused on the coordination of having UAV serve USV and have
successfully verified that this method can effectively solve the problem mentioned above of
self-awareness of a USV. Ref. [24] focused on the search and rescue of USVs in flood scenes
and proposed a collaborative mode of manipulating a UAV to establish the global map first,
providing complete map information and target localization for subsequent USV planning.
Ref. [25] proposed a cooperative formation control algorithm for a single USV and multiple
UAVs. The method is based on the leader-follower distributed consensus model, and the
position and orientation of each boat are determined by the RGB image color-space features
acquired by the UAV camera. Ref. [26] considered the strong search capability of the UAV
in the air, combined with the actual target strike capability of the USV, and proposed a
two-stage cooperative path planning algorithm on the water and underwater based on
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the particle swarm optimization algorithm. Ref. [27] proposed an effective game incentive
mechanism for the task assignment problem in the cooperative operation of USVs and
UAVs, which reduced the task cost and improved the task efficiency. Ref. [28] proposed
that the LVS-LVA framework to be applied the cooperative motion control of USV-UAV.

Although, most of these methods are cooperative ways to provide UAV environmental
data and perceptual information for the navigation task of a USV. With the development
of computer vision technology, the accuracy and robustness of the perception algorithm
they use need to be improved. In addition, they did not consider the trajectory of the USV
and its tracking control link, and the proposed collaborative framework can not be fully
applied to the autonomous navigation task of USVs.

3. Cooperative Trajectory Generation

In the USV-UAV cooperative system, the USV has a stable environmental self-supporting
ability, and the UAV is flexible and environmentally adaptable. In the process of au-
tonomous navigation of the USV, relying on the wide field of vision and strong environ-
mental perception provided by the UAV, it can generate a more reasonable trajectory and
skillfully avoid various kinds of obstacles.

3.1. Environmental Perception and 3D Projection

Environmental perception is vital when the USV is performing in unknown water
areas. Different observation angles have a significant influence on the observed results. As
shown in Figure 2, the USV and UAV have different angles of view. The USV observes the
environment from a horizontal perspective, which may lead to serious visual occlusion,
whereas the UAV performs environmental perception from a top-down perspective, which
enables more accurate map-view information.

(a) USV angle of view (b) UAV angle of view

Figure 2. Perspective difference between USV and UAV.

Concerning the accuracy of obstacle recognition and the calculation efficiency, we use
semantic segmentation technology [29,30] based on deep learning to extract pixel-level
obstacle information from the image data obtained by the UAV’s camera. For a given image,
the position, shape and size of the obstacles in the environment can be judged by assigning
each pixel with a two-categorical label: ‘0’ indicates a safety area and ‘1’ denotes an area in
which the obstacles are located.

In this paper, we use DeepLab [10] as the semantic segmentation network and replace
the backbone with MobileNet [31]. On the one hand, it reduces the amount of computation.
On the other hand, in the process of feature extraction, with the help of the atrous spatial
pyramid pooling (ASPP) module, it can effectively improve the global receptive field and
the recognition effect. The overall network architecture is illustrated in Figure 3.
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(a) Input image (c) ASPP module(b) MobileNet backbone
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Figure 3. The network architecture of the semantic segmentation algorithm deployed on the UAV.

After obtaining the pixel coordinates of obstacles in the image, it needs to convert the
obstacle coordinate information into a unified global coordinate. We define the coordinate
system of the UAV as U, the camera coordinate system as C, and the global coordinate
system as G. Thus the transformation from U to C can be represented by TUC = [R|T] ∈
R4×4, where R is the rotation matrix and T is the translation matrix. TGU · TUC denotes the
transformation matrix from G to C. Assuming that the coordinates of the obstacle point m
in the pixel coordinate system are (u, v), according to the imaging principle of the pinhole
camera model, the relationship between its position in the camera coordinate system can
be expressed as 

u = fx ·
x
z
+ cx

v = fy ·
y
z
+ cy,

(1)

where fx and fy denote the focal length in the x and y direction and cx and cy are the
positions of the origin of the image plane, which can usually be regarded as the center of
the image. Thus, the relationship between the 3D points in the global coordinate system
M = (x, y, z) and the pixel coordinate system m = (u, v) is denoted by

s ·


u
v
1
1

 =


fx 0 cx
0 fy cy
0 0 1
0 0 s

 · TGU · TUC ·


x
y
z
1

, (2)

where s is the scaling factor, which can be regarded as the depth information of each pixel.
In this paper, a binocular camera carried by the UAV is used to obtain the pixel depth s.
Through this way of 3D coordinate projection, the pixel information sensed by the UAV in
real-time can be projected into the global coordinate system, forming the 3D perception
ability of the USV to the environment.

3.2. Initial Trajectory Generation

In order to generate an obstacle avoidance trajectory, this paper applies the Hybrid A*
algorithm [23] to provide an initial path, as shown in Algorithm 1. Given the initial state of
the USV (s = (x0, y0, ϕ0)) and the navigation target state (e = (x f , y f , ϕ f )), the algorithm
first puts the initial state into the open list. Then it iteratively reads the node with the
lowest cost in the open list as the current parent node, and generates the next child node
according to the current node state, system motion mode and obstacle map. Unlike the
A* algorithm, the Hybrid A* algorithm adds the orientation dimension to the coordinate
system. Therefore, the criteria for reaching the target state is that the distance between
the coordinates of the node and the target point is less than the threshold of the reaching
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distance, and the collision-free Reeds–Shepp curve can be generated through the node state
and the target point state.

Algorithm 1 Trajectory Search with Hybrid A*
Input: x0, x f , map
Output: Trajectory T
1: Function Search(x0, x f , map)
2: open← φ, close← φ
3: open.push(x0)
4: while open is not φ do
5: xn ← open.pop()
6: close.push(xn)
7: if xn.near(x f ) then
8: if reedsheep(xn, x f ) then
9: return path(x f )

10: else
11: for xsucc ∈ successor(xn) do
12: if xsucc.safe() and not exist(xn, close) then
13: g← g(xn) + g(xsucc, xn)
14: if not exist(xsucc, open) or g < g(xsucc) then
15: pred(xsucc)← xn
16: h(xsucc)← Heuristic(xsucc, x f )
17: if not exist(xsucc, open) then
18: open.push(xsucc)
19: else
20: open.rewrite(xsucc)
21: return null

4. Trajectory Optimization and Tracking

The USV is an under-actuated robot operation system where the number of control
variables of the system is less than the degrees of freedom of the system. In the trajectory
optimization process, if the dynamic constraints of this under-actuated characteristic are
added to the optimization process, an optimal trajectory more in line with the characteristics
of ship motion can be generated.

4.1. Trajectory Optimization with Dynamics

The motion model of the USV is a mathematical model with 6 degrees of freedom
when it is complete. For simplicity, we can ignore the motion of the hull in the heave, roll
and pitch directions, and simplify it into a 3-degrees of freedom with surge, sway and
yaw, represented by x, y and ϕ. The mathematical expression of the hull dynamics can be
expressed as {

η̇ = J(η)ν

Mν̇ = τ − C(ν)ν− Dν,
(3)

where η = (x, y, ϕ) ∈ R3×1 denotes the state variables, and ν = (u, v, r) ∈ R3×1 denotes
the speed variables. J ∈ R3×3 is the transition matrix, and C ∈ R3×3 is the Coriolis
centripetal force matrix. M ∈ R3×3 is the inertial matrix, and D ∈ R3×3is the damping
matrix. τ = (τu, 0, τr) ∈ R3×1 is the thrust matrix. For a catamaran, the thrust matrix can
be expressed as {

τu = T1 + T2

τr = (T1 − T2) · B,
(4)
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where T1 and T2 are the thrusts of two propellers, and B is their distance. The USV can be
viewed as a linear time-invariant (LTI) system. Its state variables X and control variable τ
can be represented by {

X = [x, y, ϕ, u, v, r]T

τ = [τu, 0, τr]
T .

(5)

The system dynamics are as follows

ẋ = ucos(ϕ)− vsin(ϕ)

ẏ = usin(ϕ) + vcos(ϕ)

ϕ̇ = r

m11u̇−m22ur + d11u = τu

m22v̇−m11ur + d22v = 0

m33ṙ + (m22 −m11)uv + d33r = τr.

(6)

Based on Hybrid A*, the global trajectory is optimized twice with the following
constraints, including position, velocity, angular velocity and control input, as well as
waypoint state constraints. The reference waypoint state is the sub-optimal trajectory
obtained by considering the vehicle model, which can only provide the simulated optimal
information of obstacle avoidance, heading speed and other controls. In this paper, we
consider the state vector error in the optimization objective function as a soft constraint.
The final optimization objective can be represented as

min
1
2
{

N

∑
i=0

[(Xi − Xre f
i )TWx(Xi − Xre f

i ) + τT
i Wττi] +

N

∑
i=1

(τi − τi−1)
TWu(τi − τi−1)}, (7)

where Xre f
i denotes the reference state variables generated by Hybrid A*, and Wx =

diag{50, 50, 20, 15, 15, 15}, Wτ = diag{5, 0, 5} and Wu = diag{3, 0, 3} represent the positive
definite, cost and weight matrices, respectively. Moreover, to ensure adequate accuracy in
the trajectory, we choose 0.05 s as the sampling period.

We adopt the methods of minimizing the control quantity and minimizing the contin-
uous control difference to ensure that the global trajectory generated by optimization can
take into account the trajectory index factors, such as the smoothing of the control quantity
and the minimization of the energy consumption at the same time. The overall algorithm
flow is shown in Algorithm 2.

Algorithm 2 Global Trajectory Optimization
Input: X0, X f , path
Output: X
1: Function OptiTraj(X0, X f , path)
2: for i = 0 to N do
3: if i == 1 then
4: X(i) = X0
5: else if i == N then
6: X(i) = X f
7: else
8: X(i).x = pathi.x
9: X(i).y = pathi.y

10: X(i).ϕ = pathi.ϕ
11: Set constraints C
12: Set Objective Function J
13: Optimize(J, path, C, X)
14: return X
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4.2. Tracking Control with NMPC

Nonlinear model predictive control (NMPC) [32] is famous for its ability to improve
local tracking precision. It performs periodic real-time optimization according to the
prediction time window to achieve the purpose of iterative control to reduce tracking
error. Through the numerical optimization algorithm proposed above, the global trajectory
based on the kinematic and dynamic constraints of the USV can be obtained, in which the
reference control quantity can be obtained. Therefore, the trajectory optimization uses the
error index of control quantity as the optimization target. Setting the current time as tj and
the prediction time window as Wn, the optimization problem in terms of NMPC can be
formulated as

min
1
2

tj+Wn

∑
i=tj

[(Xi − Xre f
i )TWmpcx(Xi − Xre f

i ) + (τi − τ
re f
i )TWmpcτ(τi − τ

re f
i )

+(τi − τi−1)
TWmpcu(τi − τi−1)],

(8)

where the first term represents the error between the state variable and the reference state
variable, which is mainly used to improve the accuracy of state tracking and maintenance
in the process of real-time control. The second term represents the error between the control
variable and the reference control variable. This term is used to meet the index of the
lowest energy consumption. Although this problem has been considered in detail in the
context of optimization objectives in global trajectory planning, secondary planning in local
tracking control can achieve better results. The third term can improve the smoothness
of input variables in actual control and meet the needs of practical application control.
Wmpcx = diag{10, 10, 4, 2, 2, 2}, Wmpcτ = diag{2, 0, 2} and Wmpcu = diag{4, 0, 4} represent
the positive definite, cost and weight matrices, respectively. And considering the control
requirements of real-time operation and stability, we choose Wn to be 30, 0.05 s as the
sampling period, and the cycle of the NMPC algorithm call to be 0.1 s.

5. Experimental Analysis

In this section, we perform simulation experiments using the open source Otter USV
simulator [33] within the ROS environment. The Otter USV simulator is a catamaran 2.0-m
long, 1.08-m wide and 1.06-m high. When fully assembled, it weighs 65 kg, and has the
ability to be disassembled into parts weighing less than 20 kg, such that a single operator
can launch the Otter from a jetty, lake, beach or riverbank. A PX4 drone autopilot is used as
the UAV, which is mounted with a monocular camera. The Otter USV is traveling within a
200× 100 square meter area, with many blocks placed therein as obstacles. We set up several
different obstacle terrains to test the crossing ability of the USV-UAV cooperative system.

5.1. Obstacle Recognition Ability

Firstly, we perform experiments on the ability of obstacle recognition by the USV
monocular camera. The semantic segmentation algorithm is used to recognize objects.
Several terrains are randomly placed in the virtual environment. Some of the segmentation
results are shown in Figure 4, from which we can see that the proposed light-weight
segmentation network can successfully identify obstacles in the environment. Although
there are some empty areas in the middle or on the edges of the obstacles, the basic shape of
the obstacles has been preserved. In the post-processing stage, image expansion can be used
to increase the safe collision avoidance area and ensure the reliability of navigation. After
that, 3D projection can be performed to convert the pixel information into 3D information
in a global coordinate system.
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Figure 4. Obstacle recognition results of different terrains.

5.2. Trajectory Generation Performance

The trajectory generation result is illustrated in Figure 5, from which we can see that
the generated trajectory not only meets the collision avoidance condition, but also conforms
to the hull’s kinematic characteristics. In the experiment, the Otter is an under-actuated
USV and cannot provide direct lateral thrust during its operation. This requires that the
running trajectory of the USV must be smooth enough, because too many bends will bring
instability to the motion control of the USV and lead to the failure of path trajectory. The
corresponding results can be seen in the subsequent path tracking control experiments.

Figure 5. Global trajectory generation performance of the USV-UAV cooperative system.

The changing trend of the state and control quantity of the USV with time for the
generated trajectory can be found in Figure 6. Overall, the quantities show a relatively
gentle trend, especially for the x and y quantities, which verifies the smoothness of the
trajectory. Higher order quantities such as u, v and yaw also present a gentle trend. Those
are sufficient to show the effectiveness of the trajectory optimization method.

We also performed an ablation study on the proposed method. As shown in Figure 7,
the LOP and GP+LOP methods are compared. LOP denotes the trajectory generation
with local optimization planning, which means the global map provided by the UAV is
unknown. Due to the limited perception field of the USV, it will take action to perform
local trajectory planning unless it is near the obstacle. GP+LOP denotes global planning
without trajectory optimization, which means the global map is known while trajectory
optimization is not performed. Without the optimization stage, the generated trajectory
shows a twisted shape, which is not optimal. GOP+LOP denotes the proposed method.
In the lower left-corner of each sub-figure, the total length of the generated trajectory is
shown. Our method obtains the shortest planned path with the best smoothness.
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Figure 6. The changing trend of the state and control quantity of the USV with time.

Length: 56.34m Length: 55.32m Length: 52.85m

(a) LOP (b) GP+LOP (c) GOP+LOP

Figure 7. Trajectory generation comparison with different methods. LOP: trajectory generation
with local optimization planning (global map provided by the UAV is unknown); GP+LOP: global
planning without trajectory optimization; and GOP+LOP: the proposed method.

Here, we also compare the three methods quantitatively in Table 1. The indexes, such
as RMSE, max error, speed and time, are evaluated by driving the hull to move. With the
trajectory optimization method, the generated trajectory is more in line with the kinematic
characteristics of the hull. As such, the tracking error, execution speed and control time
achieve optimal values compared with other methods.

Table 1. Quantitative comparison of different trajectory generation methods.

Method Length RMSE Max Error Speed Time
(m) (m) (m) (m/s) (s)

LOP 56.34 0.120 0.3045 1.513 0.0667
GP+LOP 55.32 0.118 0.3047 1.608 0.0697
GOP+LOP 52.85 0.113 0.2312 1.675 0.0506
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5.3. Tracking Control Performance

To further verify the effectiveness of the proposed NMPC tracking control module,
extensive comparative experiments are conducted. As shown in Figure 8, GOP+LP denotes
the tracking control method without optimization, i.e., the plain PID with adjusted parame-
ters. The proposed NMPC shows better tracking control performance qualitatively and
quantitatively. There is no prediction time window for GOP+LP, so there will be many
minor adjustments, resulting in an actual motion trajectory that is not smooth.

RMSE: 0.135m
Max error: 0.3829m

RMSE: 0.114m
Max error: 0.2312m

(a) GOP+LP (b) GOP+LOP

Figure 8. Tracking control performance comparison. GOP+LP denotes the tracking control
method without optimization, i.e., the PID control. GOP+LOP denotes the proposed method with
NMPC control.

The execution states of different tracking control methods are visualized in Figure 9,
from which the plain PID control shows unstable tracking states. Especially for the control
input, the τr shows a divergent trend, which may lead to the input variable exceeding the
controllable range and adversely affecting the motion control of the USV.

−

−

−

−

Figure 9. Execution state comparison of motion tracking control.

The quantitative comparison of tracking control methods can be found in Table 2,
from which the proposed method shows better performance than GOP+LP (i.e., plain
PID control). The proposed method not only achieves a smaller tracking control error,
but also drives the USV at a quicker speed. Those particularly prove the effectiveness of
the combination of motion control and trajectory generation with hull dynamics.
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Table 2. Quantitative comparison of tracking control methods.

Method RMSE Max Error Speed
(m) (m) (m/s)

GOP+LP 0.135 0.3829 1.327
GOP+LOP 0.113 0.2312 1.675

6. Conclusions

In this paper, a USV-UAV cooperative trajectory planning algorithm is proposed to
overcome the problem of USV navigation in complex and multi-obstacle environments
with an unknown global map. The proposed cooperative system is simple yet practical. In
our method, the UAV acts as a flying sensor, providing a global map to the USV in real-time
with semantic segmentation and 3D projection. Afterward, a graph search-based method
is applied to generate an initial obstacle avoidance trajectory. An optimization method
that considers the kinematic characteristics of the hull is proposed to make the trajectory
more in line with the situation. Finally, an NMPC control method is applied to ensure high
precision motion control of the USV. The proposed method has excellent performance and
strong practicability in ocean engineering. In future work, we will verify the feasibility
of the method in physical experiments and try to study the heterogeneous cooperation
scheme of multi USV-UAV systems.
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