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Abstract— This paper proposes a method for online large-
scale dense mapping. The UAV is within a range of 150-250
meters, combining GPS and visual odometry to estimate the
scaled pose and sparse points. In order to use the depth of
sparse points for depth map, we propose Sparse Confidence
Cascade View-Aggregation MVSNet (SCCVA-MVSNet), which
projects the depth-converged points in the sliding window on
keyframes to obtain a sparse depth map. The photometric
error constructs sparse confidence. The coarse depth and
confidence through normalized convolution use the images
of all keyframes, coarse depth, and confidence as the input
of CVA-MVSNet to extract features and construct 3D cost
volumes with adaptive view aggregation to balance the different
stereo baselines between the keyframes. Our proposed network
utilizes sparse features point information, the output of the
network better maintains the consistency of the scale. Our
experiments show that MVSNet using sparse feature point
information outperforms image-only MVSNet, and our online
reconstruction results are comparable to offline reconstruction
methods. To benefit the research community, we open-source
our code at https://github.com/hjxwhy/LODM.git

I. INTRODUCTION

Camera-based 3D online dense reconstruction is a chal-
lenging problem in the field of computer vision. At present,
there are many methods based on different kinds of cameras,
most of which are based on a depth camera or binocular
camera. However, there are relatively few methods based on
a monocular camera. We can easily get monocular cameras
in our daily lives compared to depth cameras and binocular
cameras, but using monocular reconstruction is the most
difficult. The main reason is that the monocular camera can
not directly obtain the depth information of the environment,
so the algorithm needs to estimate the scene through the
image sequence. In addition, it is impossible to obtain the
scale information only by a monocular camera.

Some previous works are mostly oriented towards indoor
scenes including methods based on traditional algorithms [1]
and methods based on convolutional neural networks [2—-8].
[8] is most closes to ours, but it is up-to-scale indoor 3D
reconstruction. In addition, there are also methods for dense
reconstruction of large outdoor scenes [9—12]. This paper
proposes a monocular online dense reconstruction method
for large-scale outdoor fields by combining multi-view stereo
(MVS) and simultaneous localization and mapping (SLAM)
techniques. We recover the scale by incorporating GPS infor-
mation and also use SLAM’s sparse geometric prior informa-
tion to construct a scaled 3D world. We apply the proposed

The authors are with the Institute of Cyber-Systems and Control, Zhejiang
University, Hangzhou, China. (Yong Liu is the corresponding author, email:
yongliu@iipc.zju.edu.cn)

* These authors contributed equally to this work.

Fig. 1: LODM is a monocular online dense reconstruction
method for large-scale outdoor fields. Our system can accu-
rately reconstruct some ground details, such as the tilt angle
of the roof and trees on the ground. The green box in the
upper right corner is the satellite map, our method coincides
with the satellite map

method for dense reconstruction of high-altitude UAVs and
train on virtual and real scene datasets, demonstrating the
robust adaptability of our method in complex scenes. Fig. 1
shows the reconstruction effect of our algorithm, in this large
scene we can reconstruct online and can have good details.

To summarize, the main contributions of this paper are as
follows:

o« We propose a full outdoor large-scale dense recon-
struction system that can be used for dense online
reconstruction of high-altitude UAVs with scale.

o We leverage the sparse depth information and sparse
confidence information provided by the sparse SLAM
system to give the MVS coarse depth and depth confi-
dence, achieving a better result than image only.

e Our system can run on real scene and simulation
scene data and achieve results equal to the offline 3D
reconstruction.


https://github.com/hjxwhy/LODM.git

II. RELATED WORK

3D dense reconstruction has been extensively studied, in-
cluding optimizing 3D reconstruction of pure images through
optimization methods and deep learning for end-to-end re-
construction. Combining deep learning and SLAM systems
to simultaneously estimate pose and 3D reconstruction is also
an important research direction.

A. Monocular Vision SLAM

Localization and Mapping using monocular cameras re-
quire step-by-step construction of the environment through
inter-frame disparity, which is challenging, especially in
large-scale scenes. Davison et al. [13] proposed the first
monocular real-time visual SLAM system, which is the first
successful application of the SLAM method to a monocular
camera. The first visual slam system that separates the front
and rear ends is PTAM proposed by Klein in 2007 [14].
After that, many feature point-based methods have been
proposed, which perform SLAM work through feature point
extraction and association, including the now widely used
ORB-SLAM [15-17]. Unlike the SLAM based on the feature
point method, the SLAM system based on the direct method
directly optimizes the photometric error. Engel et al. [18]
proposed the first large-scale direct method SLAM method.
After that, Engel proposed a pure vision framework DSO
[19], which optimizes the camera position and 3D point
inverse depth in real-time in a sliding window. Gao et al.
[20] added loop closure detection to DSO, which enabled
DSO to use the bag-of-words model to detect loop through
a new point selection strategy.

Some work related to deep learning has also been proposed
in recent years. CNN-SLAM combines depth estimation with
the SLAM system. The SLAM system tracks the pose, and
the dense depth map of the keyframe uses the pose to perform
Gaussian filtering and fuses the depth maps of adjacent
frames for dense map construction. CodeSLAM, Deepfactor,
CodeVIO and CodeMapping [4-7] are a series of dense
reconstruction methods based on variational auto-encoding.
The image is encoded into low-dimensional latent variables,
and the low-dimensional latent variables are used as opti-
mization variables. The depth map is optimized through the
jacobian of the latent variables with the depth map while
optimizing the pose.

B. Learning-Based Deep Completion

Monocular depth estimation is the task of supplementing
image depth values from a single RGB image and sparse
depth points. With the rapid development of deep learning,
many deep completion methods use deep learning. Convo-
lutional Neural Network (CNN) replaces manual features,
which is more superior in results. Uhrig et al. [21] proposed
Sparse-CNN in 2007 and proposed the concept of sparse
invariant convolution, and a series of methods follow this
idea. Ma et al. [22] proposed an encoder-decoder structure
network for depth completion, where the sparse depth input
to the network can be derived from a low-resolution depth
sensor or a visual SLAM system and proved the positive

guiding effect of sparse depth points on depth prediction.
After that, Ma [23] proposed a self-supervised method and
a more accurate network. Zhang [24] does not directly
use convolutional neural networks for depth estimation but
predicts surface normals to densify the depth map. Chen et al.
[25] proposed the method of extrapolating the sparse depth
map and then refining the depth map using the network.
For the UAV scene, Teixeira et al. [26] proposed a depth
completion and uncertainty estimation method, which can
better cope with the challenges of prominent viewpoints and
depth changes of aerial platforms.

C. 3D Reconstruction

Traditional methods take images and pose as input and
reconstruct 3D environments or objects through iterative
optimization. Since the traditional method needs to optimize
the objective function iteratively, it generally takes time.
Schops et al. [11] perform temporal, plane-sweep-based
depth estimation using the poses and images obtained from
a mobile tracking device for outdoor 3D reconstruction.
DTAM [1] is a system for real-time camera tracking and
reconstruction that relies not on feature extraction but dense,
every pixel method.

Nowadays, the 3D cost volumes-based method is a pop-
ular research method. DeepMVS [27] proposed one of the
first cost-volume-based approaches, which takes an arbitrary
number of posed images as input and predicts high-quality
disparity maps by using a set of plane-sweep volumes.
MVSNet [28] proposes to build the 3D cost volume based
on a 2D deep feature map via the differentiable homography
warping and then use the 3D convolution to regress the
initial depth map, which is then refined with the reference
image to generate the final output. Yi et al. [29] introduce
two novel self-adaptive view aggregations to weight pixel-
wise view aggregation and voxel-wise view aggregation for
different view images. To overcome the time-consuming and
memory consumption of MVS, Gu et al. [30] propose a
cascade cost volume which is built upon a feature pyramid
encoding geometry and context at gradually finer scales and
narrowing the depth (or disparity) range of each stage by the
prediction from the previous stage. The closest to our work
is TANDEM [8], who combined Gu et al. [30] and Yi et
al. [29] into the SLAM system and proposed CVA-MVSNet
to achieve better results in indoor environments. Inspired by
TANDEM, we combine visual SLAM and GPS to estimate
scaled poses in outdoor scenes. We use sparse depth points
to provide CVA-MVSNet [8] with a coarse depth and an
uncertainty map through the confidence propagates network
proposed by [31] to make a large-scale 3D reconstruction at
scale.

III. METHODOLOGY

The large-scale mapping method proposed by us includes
three-part:visual-GPS odometer, confidence-based depth es-
timation with CVA-MVSNet, dense mapping, Fig.2 shows
an overview of the system. The visual odometry front end
uses the image and the depth map output by the network to
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Fig. 2: The front-end uses images and GPS to generate a
scaled initial pose and also receives the depth map from
the network; SCCVA-MVSNet uses the information from the
front-end sliding window to recover the depth of the latest
frame; The back-end uses GPS to optimize the front-end Pose
further; The Fusion module uses the Pose from the back-end
and the depth map output by the network to fuse the final
point cloud map.

output the pose and utilizes GPS to recover the scale. The
SCCVA-MVSNET network utilizes frames and sparse points
in the front-end sliding window for depth recovery. The 3D
reconstruction process uses the back-end optimized pose and
fuses the depth map of each keyframe to generate a dense
3D point cloud map.

A. Visual-GPS Odometry

We extend the LDSO [20], use GPS to give the actual
scale to the DSO as our front-end, and add GPS constraints
when optimizing the pose map at the loop closing thread
as our back-end. In addition, we give the depth map output
by the network to the latest keyframe in the sliding window
and assign the depth value to the point just selected in this
frame. In the back-end, we will use the pose constraints
obtained in the front-end to constrain the pose between the
two frames, and we will keep the loop closure method of
LDSO. However, we do not use loop closure detection in
the following experiments in section IV. We optimize the
pose in the pose graph, and the paired errors are expressed
as:

€ij = Tj_lffiTij (1)

Where (-) is the estimated value of the variable, and T};
represents the pose constraint of frame J to frame I, which
can get from the front end or loop closing. In addition, we
also integrate GPS in the back end and add GPS constraints
to the pose to constrain the position. The error term can be
expressed as:

e = |t — tgil ()

Where t; is the estimated value of the position of the ¢ frame,
and t4; is the value of the GPS to the local coordinate system.

Finally, we use G20 [32] to build the optimization graph and
perform graph optimization. The overall optimization graph
is shown in the Fig. 4.

B. SCCVA-MVSNet

Our overall network structure is shown in Fig. 3. we take
the information of keyframes in the window as the input of
the network. However, instead of directly inputting the image
and the corresponding pose, we use the depth and confidence
maps of the sparse feature points of the image together as
the input to the network. The input of our network can be
expressed as {I;,S;,C;, T;},i=1,2,..., N, where N is the
number of keyframes in the sliding window of the Vision-
GPS odometry front end, and I; represents An image of
size (H,W), S;,C; are the sparse feature depth map and
parameterized confidence map of the image I;, respectively,
T; represents the pose of each image information, which can
be obtained directly from the front end of SLAM. Vision-
GPS odometry can provide scaled sparse feature points, and
we will move all feature points {Py, Pa,---, Py} in the
sliding window to all keyframes are projected to get the
sparse depth map S; of each keyframe in the sliding window.

We use the photometric error of the sparse point as the
confidence of the sparse input point to get the confidence
map C; of the keyframe,more specifically, we will calculate
the confidence map of each frame with the following formula
[4]:

a

3)

Cik = a+t e
Where e, is the photometric error of a specific point Py
in the sliding window projected to the ¢ frame, if the host
frame of Py is frame i, then we will take P}, project to other
keyframes and take minimum photometric. a is an average
photometric error, and it maps the confidence to [0,1] by
the Eq. 3 we can calculate the depth map S; with mutual
projection while the confidence map C;, and the point with
more significant photometric error will have little confidence.
The first part is a Normalized Convolution Network, a
combination of normalized convolutions with confidence-
aware max-pooling for down-sampling and bilinear for
up-sampling. The input of Normalized Convolution Net-
work is the sparse feature depth map &1,Ss,...,Sn
and parameterized confidence map Cy,Co,...,Cn.The out-
put of the network is estimated dense feature depth
map S},S5,...,Syand parameterized confidence map
C{,Ch, ..., Cly.
Confidence is propagated forward in the network through
the following formula:

Em,n C’fj,:-lnL,v-‘rnF (an,n)
Y T Whn)
where C!

w18 the confidence output of the Ith layer at
locations u, v depend on the weight element Wﬁmn, which is
the network kernel weight, and the bias b', both are learnable
parameters. C' ! is the output confidence from the previous

Cly= + b 4)
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Fig. 3: The converged feature points of all keyframes in the window are projected between all frames to form sparse depth
maps(blue) and confidence maps (black) as the input of the Normalized Convolution Net. The second stage’s U-Net takes
concatenated coarse depth, confidence, and image to extract features for building cascaded cost volumes and hierarchically

estimates the depth maps to build.
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Fig. 4: As shown in the figure, the blue circle represents
the pose to be optimized, the blue rectangle represents
the pose constraint obtained by the front end, the orange
rectangle represents the pose constraint obtained by the loop
closure detection, and the green rectangle represents the GPS
constraint.

layer.I' is non-negativity enforcement function, in this paper
we use SoftPlus function.

The depth is propagated forward by the following formula:

Zm,n Siltjrlm,ernCilerlm,ernF (ern,n)
Zm,n Cftji-l’mﬂ-ﬁ-nr (anﬂ) +e

where € is a constant to prevent division by zero.Assuming
that the neighbors in the depth map are locally similar,
the sparse depth map is interpolated into the coarse depth
map based on the confidence provided by the photometric
error via Eq. 5. Points with higher confidence contribute
more to the surrounding pixels, yielding a more accurate
depth.When training the network, we will use Smooth L1
Loss to constrain the depth of the final output,let S* be the
ground truth value,then it can be expressed as:

S, = +b 3

Tiuw = Sgt -]
0.5z2 if |z| < 1
smoothry(z) = ’ 6
(@) |x| — 0.5, if otherwise ©

Lsmooth = vazl ZZV:BI 25:701 smOOthLl(xi,u,v)

The second part is modified from CVA-MVSNet [8], CVA-
MVSNet is based on the principles of multi-view stereo
[33] and leverages deep neural networks [28] to estimate a
depth map for the reference frame I,,. We leverage the CVA-
MVSNet with a sparse depth map and confidence to directly
estimate the depth map D,, of I, . Unlike [8],we concatenate
the image I; with the coarse depth and confidence from the
first stage and extract the feature map F;° of the N images
through the 2D UNet network, where i represents [1, N]
images, s represents different scales.

C. Multi-View Geometric Consistency Mapping

This stage aims to integrate the depth map of the active
keyframe based on the depth maps estimated. CNN-SLAM
[2] fuse the previous keyframe depth and current keyframe
depth by uncertainty map. [10] use the photometric and
geometric consistency terms to detect outliers at a negligible
computational cost robustly. Let R;_,; and t;_,; is the
rotation and translation from source frame ¢ to target frame
7K is the camera intrinsic. In order to reduce the filtering
time, we take five frames to detect outliers by the geometric
consistency.

p; =7 (Ri5;0 (P, di, Ki) + i, K) @)

where ¢(p;,d;, K) = P; is the unprojection of a pixel in
homogeneous coordinates p; to a 3D point P; for a given
estimated depth d;. Denote the projection of a 3D point
back onto the image plane as 7;(P;, K) = p;. We can get
the depth d; on the frame j according to p;,then we do a
backprojection:

p; = mi (Rj-i¢ (ps, dj, Kj) + 54, K)
d; = [Rj=i¢ (pj, dj, Kj) +tj54]2

where [-], represents the value of the z-axis. We compute
the geometric consistency between two views as the forward

(®)
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with 250m. LODM keeps the scale well, and the boundaries of objects are more clearer, e.g., the building in the second

row or LODM keeps the scale well in the third row.

reprojection error ||p; — p/||> and the depth error ||d; — d}]|.
Our fusion finds clusters of consistent pixels in multi frames
that satisfy reprojection error ||p; — p||*> < t and depth
error ||d; — d}|| < e constrain. We fuse the cluster’s elements
if it has at least three elements. The fused point has median
location overall cluster elements. The median location is used
to avoid artifacts when averaging over multiple neighboring
pixels at large depth discontinuities [10].

IV. EXPERIMENTS

In order to achieve online dense graphs, we put the front-
end visual odometer and back-end GPS optimization on
different CPU threads, and the DNN inference runs on the
GPU. We train our network in PyTorch [34] and perform
inference in C++ using TorchScript. The network is trained
on four NVIDIA RTX 3090 GPU for 50 epochs, the learning
rate is 0.004, linear decay from 0.004 to 0.004/100, image
size is 640 x 480, the batch size is 2, and the tuple is seven
keyframes in SLAM.

We did not find a dataset with GPS above 150m suitable
for our scene, so we used our drone to collect datasets of
the real scene at 150-200m altitude. We use COLMAP [10]

to reconstruct the depth value of each image and use the
resulting depth map as the ground-truth depth for training
and evaluation. In order to make the reconstruction results
of COLMAP more accurate, we input the pose estimated
by SLAM into COLMAP, so that the reconstruction results
are more accurate and faster. We also collected simulation
images from UrbanScene3D. We use the data collected from
the real scene and the data from the simulated environment
for training.

A. Trajectory evaluation

We evaluate Visual-GPS Odometry for pose estimation
against other state-of-the-art monocular SLAM methods on
simulation datasets. we evaluate against DSO [19], ORB-
SLAM2 [16], TANDEM [8]. TANDEM is closest to ours,
and we re-train the model in the aerial data. Note that
for a fair comparison, we turn off global optimization and
relocalization for ORB-SLAM?2 and loop closure detection
for ours. We trained tandem’s model on our data, but we
found that the depth map output by the network had obvious
scale drift when running TANDEM, which may be the reason
for its unsatisfactory results. Our method is scaled, which



Fig. 6: The first column is the reconstruction of TANDEM; the second column is the map obtained by using COLMAP
offline processing; the third column is the map obtained by our online processing. Our overall effect is the same as COLMAP,

and we have little noise.

TABLE I: Pose evaluation on Sequence dataset. All the meth-
ods are Sim(3) aligned w.r.t. the ground-truth trajectories.
The mean absolute pose errors deviations over five runs are
shown

Sequence DSO ORB-SLAM2 TANDEM Ours
Simulation 1~ 1.491321 0.632357 1.770763  0.305023
Simulation 2 0.912785 1.053979 1.046717  0.883941
Simulation 3 0.445929 0.472736 0.448445  0.277206
Simulation 4 0.496166 - 0.510875  0.328094
Simulation 5 0.420060 0.457639 0.623198  0.370440

makes our method more applicable to large scenes.

We evaluated after doing Sim(3) alignment with the real
world. Table I shows our results on the simulated dataset.
It can be seen that there is a certain improvement in each
simulation data set after using GPS through back-end opti-
mization. Our method utilizes GPS, this comparison is not
fair, but it also shows that our method can better use GPS
information. In addition, our method is designed for large-
scale drones, which usually have excellent satellite signals.

TABLE II: Depth evaluation on real and simulation scene.

TANDEM  Ours

AE(m) 1.158 1.016

Real 1 RMSE(m) 1.879 1.804
a1(%) 81.9 854

AE(m) 6.736 5.434

Simulation 2~ RMSE(m) 10.507 8.735
a1(%) 234 24.7

AE(m) 7.543 3.116

Simulation 5 RMSE(m) 9.958 4.878
a1(%) 10.1 40.5

B. Depth map evaluation

We evaluate the accuracy of the reconstruction on the
simulated and real datasets. We compare with TANDEM [8],
We show the percentage of pixels for which the estimated
depth falls within 1% of the groundtruth value (a1), the Root
Mean Square Error (RMSE), and Absolute Error (AE). Our
method outperforms image-only methods on all metrics in
table II. The simulation 2 sequence is a CAD model, and
we do not have such images in the training dataset, so the
performance drops a lot. The simulation 5 is a very crowded
urban simulation environment, so the performance of both



algorithms drops, but our algorithm also performs better.
A depth error of 1% for an altitude of 200 meters is a
very critical metric, so our algorithm is competent for dense
reconstruction in high-altitude environments.

We show some depth map results in Figure 5, where the
groundtruth of Real 1 sequences are obtained by COLMAP
reconstruction. We can see in the figure that our method
does better in detail. In particular, our method shows strong
robustness on complex data, while TANDEM’s network
produces incorrect spurious points in complex scenarios (as
in the fourth row). Figure 6 qualitatively shows the results
of our map building, where TANDEM outputs a TSDF map,
while both our method and COLMAP result in a point
cloud map. From the overall effect, our result is closer to
COLMAP, but our method does not have as severe outlier
points as COLMAP. Similarly, TAMDEN also has more
outliers.

V. CONCLUSIONS AND FUTURE WORK

We propose LODM, a monocular outdoor large-scale in-
the-spot reconstruction method, which we use for 3D online
reconstruction of large-scale drone scenes. We propose the
SCVA-MVSNet network, which can quickly complete sparse
depth maps to obtain high-quality depth maps. We show the
performance of our method in large-scale drone scenes, and
our method can achieve similar results as offline methods.
The 3D online reconstruction of large-scale UAV scenes is
most studied in the field of surveying and mapping, usually
multi-camera offline methods, some of which can achieve
high accuracy. We believe that in the future our method can
achieve the same accuracy as drone mapping without taking
a lot of time.
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