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Active Learning-Based Grasp for Accurate
Industrial Manipulation

Xiaokuan Fu™, Yong Liu

Abstract— We propose an active learning-based grasp method
for accurate industrial manipulation that combines the high
accuracy of geometrically driven grasp methods and the general-
ization ability of data-driven grasp methods. Our grasp sequence
consists of pregrasp stage and grasp stage which integrates
the active perception and manipulation. In pregrasp stage,
the manipulator actively moves and perceives the object. At each
step, given the perception image, a motion is chosen so that the
manipulator can adjust to a proper pose to grasp the object.
We train a convolutional neural network to estimate the motion
and combine the network with a closed-loop control so that the
end effector can move to the pregrasp state. In grasp stage,
the manipulator executes a fixed motion to complete the grasp
task. The fixed motion can be acquired from the demonstration
with nonexpert conveniently. Our proposed method does not
require the prior knowledge of camera intrinsic parameters,
hand-eye transformation, or manually designed feature of objects.
Instead, the training data sets containing prior knowledge are col-
lected through interactive perception. The method can be easily
transferred to new tasks with a few human interventions and is
able to complete high accuracy grasp task with a certain robust-
ness to partial observation condition. In our circuit board grasp-
ing tests, we could achieve a grasp accuracy of 0.8 mm and 0.6°.

Note to Practitioners—The research in this paper is motivated
by the following practical problem. Manipulators on industrial
lines can complete high accuracy tasks with hand-crafting fea-
tures of objects. The perception is only used for object detection
and localization. It is not flexible since the prior knowledge
differs from tasks, which takes a long time to deploy in a
new task. Besides, only well-trained experts are qualified to
complete the deployment process. Our grasp method uses a
convolutional network to estimate the motion for manipulator
directly from images. The camera is mounted on the manipulator
and can perceive the object actively. The training data set of the
network is specific for different objects that can be automatically
collected with a few human interventions. Our method simplifies
the deployment process and can be applied in 3C industry
(computers, communications, and consumer electronics) where
the products upgrade frequently.
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I. INTRODUCTION

ANIPULATORS are widely deployed on industrial

lines with hand-crafting solutions. They are pro-
grammed to handle a lot of repetitive high precision tasks
which greatly improve productivity. It is not flexible since
sensor data are passively perceived. Manipulation combined
with active object recognition is a more flexible and efficient
approach that can be applied in unstructured environments [1].
With the development of 3C industry, traditional-automated
manufacturing faces new challenges because of the variety
of 3C products. In order to follow up the upgrade pace of
products, it requires a more flexible grasp method with acitve
perception that can be rapidly deployed.

Geometric methods combined with visual servo control
utilize feedback information extracted from a vision sensor to
control the motion of the manipulator. The image information
includes geometric information such as points, lines, con-
tours, and ROI [2], [3]. Although these methods can complete
high precision grasp tasks, they are heavily relying on prior
knowledge, such as camera intrinsic parameters, hand-eye
transformation, manually defined features of objects, and grasp
configuration. The knowledge is specific for each task and can
hardly be transferred to the new tasks. When grasping a new
object, it takes a long time to redefine features performed by
robot experts.

Flexible reprogramming enables manipulators to make use
of prior knowledge when deployed in new specific tasks.
Task-level programming is a kind of flexible programming
method which divides skills into three layers: the primitive
layer, the skill layer, and the task layer [4]-[6]. The skills
which contain offline specification and online teaching are
parameterizable. When applying a known skill to handle a new
object, it only needs to pilot manipulator to target locations,
as well as some via-points with nonexperts. However, these
methods need to acquire the prior knowledge of a set of objects
in advance, and they can only simplify the deployment process
in a limited range of tasks.

General learning-based grasp techniques are widely used in
grasp synthesis in recent years, which have great generaliza-
tion ability to deal with known, familiar, and even unknown
objects. These methods concentrate on object representation
and perceptual processing, such as object recognition or clas-
sification and pose estimation [7]. Fusion of multiple modal
information for object recognition are studied to improve the
robustness of manipulation [8]-[10]. Usually, a deep neural
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network is used to learn grasp knowledge. Levine et al. [11]
proposes a convolutional neural network (CNN)-based grasp
predictor to choose an optimal grasp motion for end effector
and can successfully grasp a variety of objects without any
prior information of the camera, object features, or model.
Although deep learning techniques can well handle the prob-
lem of robustly grasp objects under uncertainty, they focus
more on the grasp success rate rather than the stability and
accuracy of grasping, which are especially important in the
industrial grasp tasks and cannot be ignored. Thus, a more
feasible approach that can grasp the specific target object with
high precision and has the ability to transfer into a novel
object’s grasp task with a few manual interventions is desired.

Addressing on reducing the deployment time and improving

the grasp robustness in industrial grasp application, we propose
a specific and active learning-based grasp technique that com-
bines the accuracy of geometric feature-based methods and
the generalization capability of learning-based techniques. Our
method integrates the manipulation and perception. At each
step, manipulator actively moves and perceives the envi-
ronment. A deep convolutional neural network is used to
regress the motion for the end effector. Similar to task-level
programming, the grasp configuration such as target position is
taught by nonexpert during the initial procedure. Besides, our
method does not require the information of camera parameter
or manually defined features. For each specific task, these
information are learned by actively collecting its training data
set. Compared to general learning-based grasp techniques, our
method can complete the grasp tasks with a high precision of
the industrial manipulation level. We evaluate the performance
of our method in the circuit board grasp task. The translational
and rotational errors of end effector can achieve 0.8 mm
and 0.6°, respectively. This precision is qualified to general
industrial grasp tasks.

The main contributions of this paper are as follows.

1) We propose an active learning-based grasp method,
which can achieve high accuracy grasp only with few
prior knowledges of the environment.

2) The data collection procedure of grasp training for varied
targets is automatic with few manual interventions which
can be implemented by nonexpert.

3) Our method is robust to the conditions that the initial
states of grasp targets can only be partially observed
and that the illumination of the environment is varied.

The rest of this paper is organized as follows. Section II

reviews the related research works in grasp area. In Section III,
we introduce the framework of our proposed grasp method and
our implementation process in detail. Section IV compares
our approach with traditional geometric feature-based grasp
method under different conditions. Finally, we conclude in
Section V.

II. RELATED WORK

Manipulators have widely been applied in ground and in
space [12], [13]. Grasping is an important area of all robot
manipulation. The grasp methods can be categorized as geo-
metrically driven and data driven [7].
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A. Geometrically Driven Methods

Geometrically driven, also known as analytic methods,
analyzes the shape of a target object and plans a suitable
grasp pose, based on the four properties: dexterous, equilib-
rium, stability, and dynamic behavior [14]. Geometrical grasp
methods register images of rigid objects to a known data-
base of 3-D models, which typically involves segmentation,
classification, and geometric pose estimation from 3-D pose
cloud point as well as images and then index precomputed
grasps. Typical visual servo control usually combines with
geometric methods. Position-based visual servoing (PBVS)
and image-based visual servoing (IBVS) are two archetypal
visual servo control schemes [2]. The key task of PBVS is to
estimate the pose of object based on camera intrinsic parame-
ters and known geometric features such as point features [15],
contours [16], ROI [17], and corner points. IBVS also requires
to extract geometric features first such as point features [2],
line features [18], and then establishes a dynamic control
model between manipulator vision space and motion space.
Others features such as the brightness of the whole image [19],
gray histogram [20], and image Gaussian mixture model [21]
are also used.

Although geometrically driven grasp methods can complete
high precision grasp tasks and are widely applied in industry,
the generalization ability is weak since these methods heavily
rely on hand-crafting features or 3-D model of objects, as well
as camera parameters. When applied in new tasks, it takes a
long time to redeploy the manipulator.

B. Data-Driven Methods

Based on existing grasp experience, data-driven methods
rely on sampling grasp candidates for an object and ranking
them according to a specific metric. Recent advances in deep
learning and reinforcement learning have performed well in
image classification, object recognition, and robot motion
planning. In grasping, deep learning techniques are used to
segment the target object from clutter environment [22], [23],
analyze the optimal grasp regions directly from images or
point clouds [11], [24]-[27], learn grasp experience from sim-
ulation or physic trials [28]-[30].

Deep learning technique is used to estimate the pose of the
target object and then rank the grasp candidates. A typical
learning-based pose estimation grasp pipeline is first segment-
ing the image and point clouds with a CNN, then fitting
the segmentation point clouds with a known 3-D model to
estimate the pose of object using ICP algorithm, and finally,
completing grasp task with an IK solver [22], [23]. Although
these methods have better generalization ability and can grasp
objects in clutter environment with a high success rate, they
require as much prior knowledge as geometric-based method,
such as camera parameters and 3-D model of objects.

There are also learning-based methods predicting grasp con-
figurations directly from sensor input. These methods generate
grasp candidates sampled from an image or point clouds first,
and then rank grasp candidates with a specific metric, usually
a CNN. There are several forms to represent grasp candi-
dates. Reference rectangle [24]-[26] indicates potential grasp
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Architecture: we divide the grasp task into two cascade grasp stages. The first stage is a deep learning-based servoing method where manipulator

executes a motion command estimated by neural network and moves to the pregrasp state after several iterations. In the second stage, manipulator moves to
the grasp state by executing a fixed command which is acquired through demonstration.

locations in the image. Motor commands are estimated with
success probability directly from images [11], [31]. Grasp
robustness of parallel-jaw grasp candidates from depth images
are analyzed in [27]. Based on local features of objects,
novel objects can be successfully grasped with these methods.
However, network training requires large-scale data sets. Pinto
and Gupta [24] spend 700 robot hours collecting a data set
with a size of 50 k. Levine et al. [11] use 6-14 robots to
collect a grasp data set with a size of 800 k over two months.
It is expensive to acquire such a large grasp data set of
the real manipulator. An alternative approach is generating
synthetic data sets. Mahler et al. [27] build a synthetic data
set of 6.7 million point clouds and trains GQ-CNN to analyze
grasp robustness of candidates.

Although these methods can successfully grasp novel
objects, they focus on the success rate of grasp rather than the
stability or accuracy of grasp. For a novel object, it is difficult
to estimate information on scales when using a monocular
camera, which may cause some inaccurate grasps.

Another research trending on data-driven grasp methods
is using deep reinforcement learning and imitation learning.
These methods propose an end-to-end control solution in
manipulation which learns to grasp objects by trial and error
from large amounts of interaction data without any prior
knowledge. The purpose is to train end-to-end visuomotor
policies which could output the motor command directly
from image input. These methods can learn a policy for
solving a specific task, such as grasping a block [28]. How-
ever, it requires a large amount of interactions and sample
data. Levine and Koltun [32], Levine and Abbeel [33], and
Levine et al. [34] propose a method of guided policy search
which greatly reduces the amount of sample data and improves
the validity of the data. Imitation learning is a technique that
learns control policies by observing demonstrations, which
could teach robot to perform some complex tasks [29]. Though
these methods have potential in generalization ability, they are
only able to complete some simple tasks with a low precision.
They cannot be applied in industrial grasp directly.

III. OUR TWO-STAGE GRASP METHOD

Deep learning-based grasp techniques have achieved
impressive success in recent years. However, these methods

need to collect a large amount of data set and the precision
of the grasp cannot qualify in industrial applications. In this
section, we propose a two-stage grasp method based on
active learning for accurate and stable industrial grasping
tasks.

A. Overview of Our Two-Stage Method

In industrial robotic grasping, the target object may appear
beyond the camera field of view when the tool or gripper
approaches object. To resolve this problem, we propose an
active learning-based two-stage grasp method which divides
the grasp task into two grasp stages: pregrasp stage and grasp
stage. The pregrasp state and grasp state are objective states
corresponding to pregrasp stage and grasp stage. In pregrasp
stage, manipulator moves to a proper position near to the
target object. In grasp stage, manipulator executes a designed
approaching motion command and completes the grasp task.
Thus, our two-stage method can achieve a stable and high
precision grasp and avoid collision with workbench. In our
approach, we propose a deep learning-based servoing into our
multistage grasp method. The architecture of our proposed
method is shown in Fig. 1. The pregrasp state and grasp state
are designed manually through demonstration, which deter-
mines a fixed approaching motion vector of the manipulator.
Here, the motion vector represents the motion command for
end effector, which contains a translational component and a
rotational component. Since the implementation of the second
stage is relatively simple, the primary aim of our method is to
develop a servoing method that controls manipulator to move
to the pregrasp state within limited iterations. Here, we use a
convolutional neural network to estimate the motion command
of end effector which takes raw images as input. The details
of the first stage will be described in Section III-C.

B. Formal Definition for the Grasp Problem

In this section, we give formal definitions for the grasp task.
1) States: Let x; = (Tg, Tei, Toi) denote the ith state of
manipulator, camera, and object during a grasp process where
T, specifies the frame of end effector, Ti;and T, are the frames
of camera and object. Let 75 denote the transformation matrix
from camera frame to end effector frame at state i. Our camera
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Initial state xo The ith state x; Pregrasp state x*  Grasp state X

Fig. 2. Grasp sequence: xq, x*, and X are the three key states in a grasp
sequence, x; is an ordinary intermediate state. The green block represents the
target object.

is mounted on the end effector, thus, T:i is a fixed matrix
during a grasp process.

2) Image: Let I; denote the observation by an RGB
monocular camera corresponding to x;. Let T; denote the
transformation matrix from object frame to camera frame.
I; is determined by T, when camera intrinsic parameters are
known.

3) Motion Command: We adopt a vertical grasp method.
During grasping, the end effector is always perpendicular
to the workbench, which can be applied in most industrial
grasp applications. Here, we denote v; = (p, @) as the motion
command for the end effector, where p is the translational
component specified in the frame of the manipulator’s base
and @ is the rotational component representing the relative
change in rotation around the axis vertical to the target object.

4) Sequence: Let sequence S = {xg, 00, X1, 01, ..., Xi, Vi,
x*,0*,x} denotes a grasp process, where x; represents the
state of manipulator, camera, and object after ith iterations.
v; is the motion command of end effector with respect to
x;, and manipulator transits to x;y; after executing v;. xg
is the random initial state of manipulator system. x* and X
represent the pregrasp state and the grasp state. We can divide
the sequence into S; and S> to describe the two stages,
respectively. The whole grasp process is shown in Fig. 2.

In sequence S, (xp,x*, X) are the three key states during
grasping. In pregrasp state, the tool of the manipulator is
close to the target object and the manipulator is ready to
grasp the object. In the grasp state, the robot can complete
the grasp task. Here, we use pregrasp pose and grasp pose
to denote the coordinate of the end effector in pregrasp state
and grasp state, respectively. For a specific object, we can
always choose an optimal grasp configuration as the grasp
pose utilizing our experience. In contrast, pregrasp pose is
not uniquely determined. Let G represent the set of available
pregrasp poses. We need to choose a proper x* € G, so that
the manipulator system could transit to its related x* from xg
with minimal error. An empirical approach is choosing a pose
just above the object with an appropriate height in z dimension
so that the target appears in the center of the image and the end
effector will move along a straight line without any rotation.
This process is shown in Fig. 3. We have the relationship as

ST =T TS+ T ()
Let 73 denote the coordinate transformation of frame y with

respect to frame x, thus, T;* denotes the pose transform of
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Fig. 3. Frame relationship between pregrasp state and grasp state: b, e,
¢, and ¢t represent the base, end effector, camera, and tool of the manip—
ulator. x* = (T, T,x, Tp) represents pregrasp state, while X = (Tp, T, Tp)

represents grasp state. 73 is a tool frame. ¢ represents the motion of end
effector to transform from pregrasp state to grasp state.

end effector from pregrasp state to grasp state, which can be
determined through demonstration.

5) Optimization Objective: We focus on optimizing the first
stage process S; with a constraint criterion: the sequence S
should converge to x* with a limited states. For the ith state,
we have the relationship as

TS« Ty =Tyl * Ti * TC )
We can derive the optimal motion vector for end effector is
T, =T x T, xTJ * 3)

where [; is the observed image at state x;, which contains
information of Tocii. Since T/, TS, and Tec: are constant para-
meters after specifying a proper grasp state through demon-
stration, we can develop a function f(I;) which estimates
the motion command v, of end effector. We can optimize
function f by minimizing a cost function c[Tel,*

e f(Il)]

C. Implementation of the Pregrasp Stage

The objective of the first stage is to control manipulator to
move to the pregrasp state within a limited time. The imple-
ment mainly consists of two components: the convolutional
neural network to estimate motion command and the servoing
method. Thus, we need to consider several issues.

1) The designed neural network should be qualified to

regress relative pose with a high precision.

2) An efficient sample policy should be developed to reduce
the number of physical samples during training as well
as human interventions.

3) The network could be trained within an acceptable time
interval.

We will then design the motion estimation network based

on these above issues.

1) Network Architecture: Deep convolutional neural net-
work performs well in the image process field. PoseNet [35]
is a convolutional network regressing six-DOF camera pose
directly from images which can obtain an accuracy approx-
imate to 2 m and 6° in indoor scenes. Thus, CNN may be
regarded as the form of nonlinear function to regress pose
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Fig. 4.  Network architecture: we use pretrained convolutional layers of
GoogleNet, followed with two fully connect layers to estimate the motion
command.

TABLE I
COMPARISON OF AUTONOMOUS COLLECTING GRASP DATA SET

Lerrel Pinto [24]
50k
700 robot hours

Sergey Levine [11]
800k
2 month/6~14 robots

Grasp attempts
Collecting time

information. Similar to PoseNet, we propose our convolutional
neural network on the basis of GoogleNet [36]. However,
since industrial grasp task requires millimeter-level accuracy,
we need to improve the pose estimation accuracy for the
specific target object.

The input of our network is the current image /; and
the output is a command for end effector v; = (p, #) which
contains four dimensions. Considering the estimating error in
z dimension is larger than x or y dimension for a monocular
camera, we simply the output by cutting z dimension in order
to improve the accuracy of our network. For each grasp task,
the manipulator first moves to the same height as pregrasp
pose, and then estimates command v; with the network where
p=(x,y).

In addition, we modify the network structure by replacing
softmax layers with regressors and insert two fully con-
nected layers before regressor with the size of 2048 and 128,
respectively. The regressor outputs a pose vector of three
dimensions to represent the command of end effector. The
architecture of our network is shown in Fig. 4. We first pretrain
GoogleNet in image classification data set, and then transfer
the convolutional layers of GoogleNet with trained weights to
our motion estimation network directly.

2) Data Collection: The performance of the neural net-
works highly relies on the scale of the training data set.
Although some state-of-the-art grasp networks are trained with
autonomous collected data sets, shown in Table I, they still
need too much time to deploy in industrial tasks. For the
industrial grasp task, a more efficient and robust approach that
can sample a relatively small data set and train the network
within a few hours is especially important.

We propose a method that the manipulator can actively
collect training data set with few manual interventions. For
each new object, we only need to design a grasp state and a
pregrasp state for the manipulator, then the manipulator will
actively control the end effector and the camera will capture

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 16, NO. 4, OCTOBER 2019

its perception as training data (the motion command and the
corresponding image) for the training of the network.

Supposing image [; is observed at the current state x;,
the output of network is f(/;), and the manipulator transfers
to state x;11 after executing a motion command v, = f(I;).
The optimal situation is that the sequence S; converges to x*
after only one iteration. Therefore, T:*" is an appropriate label
for its corresponding image ;.

When manipulator moves, the relative pose between object
and camera changes, and the observed image also changes.
We record the current pose of the end effector, and the label
of each image is the relative translation vector to the pregrasp
pose based on the current pose. In order to improve the
efficiency of sampling, a proper sampling policy to cover the
workspace of the end effector is necessary. In our approach,
the Gaussian distribution- and the uniform distribution-based
sampling policy are employed to efficiently cover the motion
space. Our autonomous data collection process is shown in
Algorithm 1. It is able to collect 10 k images in 6 h which can
satisfy the precision training requirement in industrial grasp
tasks.

Algorithm 1 Autonomous Data Collection Process

1: Determine pregrasp state x*, where T+ is the pregrasp pose
of the end effector.

2: Training dataset 2 = {}.
3: fori < N do
4: Choose a T, sampled from Gaussian distribution

N (Tp+, X) or Uniform distribution % (Tpx — o, Tex +0).
5:  Control end effector to move to 7, capture current image
I, calculate its label T..
Add (I, T}.) into 2.
: end for
: return 2.

3) Network Training: In industrial grasp task, it is critical
to shorten the deployment time. Therefore, we pretrain the
network in the image classification data set, and then fine tune
with our collected data set, which could reduce the training
time.

When designing the cost function, we need to balance the
translation and the rotation errors. Here, we use Euclidean
norm. Eqyations 4 and 5 present the loss function of the
translational component and the rotational component, respec-
tively, where p and @ are ground-truth values and p and 0 are
estimating values

Cp(Ii) = [Ip — pl2 4)
Co(1i) = 110 —Oll. (5)
We refer to [37] where learnable parameters § p and Sy were

introduced to balance the translational and the rotational errors.
Then the final cost function is

G 1) = Cp (1) exp(=5p) + 5p + Co (i) exp(—$p) + So. (6)

The size of the input image is 224 x 224, while the resolution
of our camera is 1600x1200. We need to downsample the
image to 400x300 first, and then crop it into 224 x224.
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The network is implemented on Tensorflow library. It is
trained using stochastic gradient descent with the learning
of 0.0001 and a batch of 75 on a single GPU(TITAN X
Pascals). The whole training time is less than 1 h.

4) Servoing Method: Considering there will be errors on
those regressed motion commands output by the trained net-
work, it is difficult to control robot to move to the desired pose
with just one iteration when using open-loop control process.
We combine our network with a closed-loop servo control
method. Our servoing method is presented in Algorithm 2.
At each step, the network takes the inputs of currently
perceived image I, and estimates the motion command o;.
We set a threshold for the estimated v; in order to reduce the
oscillation of end effector. The manipulator will execute v, if
v; 1s less than the threshold. In this method, the end effector
could move to the desired pose after several iterations.

The threshold is set according to the precision of the motion
estimation network. Here, we set the threshold to 0.8 mm in
translational component and 0.6° in rotational component.

Algorithm 2 Servoing Method

1: Given current image /; and network f.

2: Compute the command v; using v; = f ().

3: while v; > threshold do

4:  Control the end effector with command v;, and capture
the current image ;1.

5:  Compute the command v; using v; = f([;41).

6: end while

7: Control the end effector with T;*.

D. Implementation of the Grasp Stage

In the second stage, manipulator executes an approaching
translation vector to achieve the grasp task. It is a practical
approach to avoid collision with the objects. The approaching
translation vector is given through demonstration which is
relatively simple and can be completed with nonexpert. The
process is shown in Fig. 1.

1V. EXPERIMENTS
A. Physical Evaluation Platform

Our experiments are performed on an ABB irb-120 manip-
ulator, with a point grey FL3-GE camera mounted on its end
effector. The grasp industrial object is a circuit board. Consid-
ering the goal of our deep learning-based grasp approach is to
control the manipulator to move to the pregrasp pose from a
random initial pose precisely, the precision of the second stage
implement is determined by demonstration. Therefore, we do
not evaluate the second grasp stage of our approach, which
needs to equip a specific gripper. Our experimental hardware
platform is shown in Fig. 5.

B. Data Collecting and Network Training

For network training, we hope to achieve the best training
results with as few training samples as possible. Considering
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circuit board

Manipulator platform

Fig. 5. Experiment hardware platform.

the amount of data samples, the optimal situation is to cover
the sampling space with as few data as possible. We mainly
consider the Gaussian distribution and the uniform distribu-
tion.

1) Uniform Distribution: All the samples in the sample
space are equally important. It is a direct but effective sample
method.

2) Guassian Distribution: The samples near to the pregrasp
pose are more important than those far from pregrasp pose.
This is mainly based on the situation that our servoing method
needs several iterations to control manipulator to move to the
target pose. When the pose of the end effector is far from
target pose, it only needs to execute an approximate motion
command so that it can move to a pose near to the pregrasp
pose. On the contrary, the network needs to regress a precise
motion command when the end effector is near to the target
pose.

In order to compare the effects of different sample dis-
tributions on the experimental results, we collect a data set
containing 10044 samples with the Gaussian distribution and
another data set containing 10513 samples with the uniform
distribution. For each data set, we select 9000 images as the
training data set and the rest as the testing data set. Based on
those two training data sets, we train two networks with the
same architecture and compare their regression errors in their
corresponding testing data sets.

The experimental results in Fig. 6 compare the translational
error of the estimated motion command on different sample
distribution data sets. Both sampled data sets are able to train
a high precision motion estimation network where more than
95% samples in the testing data set achieve 5 mm precision in
both x and y axes. When using the uniform distribution-based
training data set, 48.3%(557/1153) of the testing data set can
achieve less than 0.5 mm precision and 71.6%(825/1153) can
achieve 1 mm precision, while only 9.1%(95/1044) of the
testing data set can achieve 1 mm precision when using the
Gaussian distribution-based training data set. Thus, the motion
estimation network in subsequent experiments is trained with
the uniform distribution data sets.

C. Grasping Results Analysis

Our servoing method is based on the motion command
estimated with neural network. It is difficult to analyze the
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Fig. 6. Network regression error comparison between uniform distribution and Gaussian distribution data set: images in the first row are training results

using Gaussian distribution data set, the second row are training results using uniform distribution data set.

convergence of the network. Here, we analyze the posi-
tion error of our servoing method through several sets of
experiments.

We take a known pregrasp pose as the ground truth so that
we can compute the error of the network’s output. In our
experiment, we keep the same relative pose between the
circuit board and the base of the manipulator. Under these
circumstances, the pregrasp pose of end effector is uniquely
determined. Then we randomly initialize the pose of end
effector where the camera can observe at least a small part
of the target object. Utilizing the proposed servoing method
to control manipulator to move to the estimated pregrasp pose,
we compute the error compared with the ground truth and eval-
uate our approach compared with the geometric feature-based
methods. We present the baseline method as follows: point
features are extracted to estimate the pose of object. Similar
to our deep learning-based grasp technique, the manipulator
will estimate its pregrasp pose according to those extracted
features from observed images and move to the desired pose
at each step. After several iterations, the manipulator can reach
its pregrasping pose with small error.

To evaluate our proposed learning-based grasp method,
we conduct three experiments. In the first experiment, we com-
pare the performance of our method with the baseline method
under the same initial conditions. In the second experiment,
we adjust the intensity of illumination to test the robustness
of our servoing method. In the last experiment, we change the
initial pose of end effector where the circuit board can only
be partially observed by the camera.

1) Comparison With Baseline Method: We conduct the
first experiment to compare the performance of our deep
learning-based grasp method with the geometric feature-based
baseline method. This experiment includes ten trials where the
pose of the target object is unchanged. These ten trials share
the same pregrasp pose. In each trial, both methods start from
the same random initial pose of the end effector, and we then
compute the errors with the same target pose at the end of
the pregrasp sequence S1. In each trial, our proposed method

TABLE II

ERROR OF EACH STATE IN A GRASP SEQUENCE UNDER
DIFFERENT ILLUMINATE CONDITIONS

illuminatel illuminate2

iteration x(mm) y(mm) 0(°) x(mm) y(mm) 6(°)

0 -10.13  7.21 27.65 -10.13 7.21 27.65
1 -040 082 -0.09 -046 154 141
2 032 054 002 -012 047 0.73

can complete S1 within two or three iterations. Fig. 7(a)
shows the translational error and the rotational error of our
proposed method are less than 0.9 mm and 0.6°, respectively.
Fig. 7(b)—(d) compares the error of the end effector in each
dimension when using our proposed method and the baseline
method. In translational dimensions, our deep learning-based
method performs as well as the baseline method. Although our
deep learning-based method performs worse in the rotational
dimension, its accuracy is still able to satisfy the requirements
of industrial grasp.

2) Hllumination: We test our method in two different illumi-
nation conditions with the same initial pose and target state.
Fig. 8 shows the captured images of each state in a grasp
sequence. The upper row is the grasp sequence under a weak
intensity of illumination, while the bottom row is under a
strong intensity of illumination. Table II shows the error of
each state compare with the target state in the grasp sequence.
The training data set of our motion estimation network is
collected with a stable illumination condition, which means
the changed illumination may not be included in our training
data set. When the illumination intensity changes, our servoing
method can still achieve an accuracy of 0.7 mm in translation
and 0.8° in rotation.

3) Partial Observation: Traditional geometric feature-based
servoing method requires to extract features of the target
object. It may fail to estimate the object’s pose when part of the
target object is beyond the camera field of view. We evaluate
our method in such case. In our experiment, we initialize the
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between deep learning method and baseline method.

TABLE III
ERROR OF EACH STATE IN A GRASP SEQUENCE WHEN THE OBJECT OF INITIAL STATE IS PARTIAL OCCLUSION

lower-right occlusion lower-left occlusion

upper-left occlusion 1 upper-left occlusion 2

iteration x(mm) y(mm) 0(°) x(mm) y(mm) 0(°) x(mm) y(mm) 6(°) x(mm) y(mm) 6(°)
0 -47.00 59.71 -39.21 -71.28 -9472 -540 59.18 -123.13 -11.50 95.81 -0.64  -25.67
1 -1.92 2.48 -0.71 -548 5245 -436 -4.33 -72.97  -7.04 2459 -16.68 246
2 0.26 0.20 0.21 -0.26 -1.72 156  -1.00 -2626  -3.09 1.02 0.21 0.64
3 - - - 0.63 0.51 0.29 0.24 -0.24 -0.26 0.65 0.33 0.63
Initial state Target state four grasp sequences. When the majority of the target object

(demonstrate)

Fig. 8.  Grasp sequence: observed images of each state under different
illumination conditions.

Initial state

Target state
(demonstrate)

End of
sequence

Fig. 9. Grasp sequence: observed images of each state when the object of
initial state can only be partially observed.

end effector with a random pose where the target object is
partial occlusion. Then, we control the manipulator to move to
the pregrasp pose by our proposed method. As shown in Fig. 9,
four grasp sequences with different partial occlusion initial
states can converge to the target state within three adjustments.
Table III shows the estimation error at each state during

appears out of camera’s view, there may still be a large error
after executing the first estimated motion command. But the
manipulator will move close to the pregrasp where the whole
object can be observed. The overall error shows a decreasing
trend.

V. CONCLUSION

This paper proposes a method integrating both deep learning
technique and visual servoing for the purpose of solving
industrial precise grasp tasks. Active perception is used in
automatically and efficiently collecting the training data set
for each specific object. Compared to traditional geomet-
ric feature-based visual servoing method, our method does
not require to calibrate camera or extract features manually,
so that the whole initialization process does not require too
much manual interventions. In addition, our method is a
precision stable and feasible grasp solution, which could be
applied in industrial grasp compared with state-of-the-art deep
learning-based grasp methods.

In the future, we will still further explore and improve
our approach in the following aspects: such as introducing
a more efficient intelligent active planning to further improve
the sample efficiency, training the regressed motion of a full
6 degree of freedom, and adapting for the complex operating
environment.
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