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Abstract— We introduce a novel RGB-D descriptor called 

local ordinal intensity and normal descriptor (LOIND) with the 

integration of texture information in RGB image and geometric 

information in depth image. We implement the descriptor with 

a 3-D histogram supported by orders of intensities and angles 

between normal vectors, in addition with the spatial 

sub-divisions. The former ordering information which is 

invariant under the transformation of illumination, scale and 

rotation provides the robustness of our descriptor, while the 

latter spatial distribution provides higher information capacity 

so that the discriminative performance is promoted. 

Comparable experiments with the state-of-art descriptors, e.g. 

SIFT, SURF, CSHOT and BRAND, show the effectiveness of 

our LOIND to the complex illumination changes and scale 

transformation. We also provide a new method to estimate the 

dominant orientation with only the geometric information, 

which can ensure the rotation invariance under extremely poor 

illumination. 

I. INTRODUCTION 

In the fields of computer vision and robotics, feature 
matching is the essential operation in many complex problems, 
such as image stitching, wide baseline matching, coarse 
alignment and image retrieval etc. The basic idea of image 
based feature matching is to find some local interest points or 
regions in images by detectors, and then encode those points 
or regions by relative invariant descriptors for further 
matching. Excellent descriptor should be robust to 
illumination, scale, noise and other complex environments. 

As the RGB images are rich in texture information and 
have high resolutions, researchers have presented many 
discriminative descriptors, such as SIFT [1] and SURF [2], 
which are widely applicable and robust to many variations and 
distortions. However, under some extreme cases such as 
dramatic changes of lighting and textureless scenes, those 
classical descriptors cannot always achieve enough 
discriminative performance. Meanwhile, 3D surfaces can be 
built by laser or other high-precision TOF sensors. There are 
also some descriptors generated from those dense depth point 
data, such as Spin Images [3], which is a prominent histogram 
descriptor based on geometric encoding and is invariant to 
rotation. SHOT descriptor [4], which designs robust and 
unambiguous local RF (Reference Frames) to encode 
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descriptors. The drawbacks of depth based 3D descriptor are 
obviously, they require high quality data points to maintain 
their discriminatively capability. Once the scene only contains 
flat surfaces, their performances will decrease dramatically. 
Moreover, their computational complexities are also high. 

Nowadays, there are some new works focusing on 
combining both RGB and Depth information to construct 
uniform descriptors, e.g. CSHOT [16] and BRAND [11]. 
Although it has been proved that combination may provide 
better performance than any single of one’s [15], current 
RGB-D combination based descriptors also have some 
limitations. CSHOT’s performance is highly dependent on the 
accuracy of the geometric information, thus it cannot achieve 
well performance on low quality depth data, such as data from 
Kinect. BRAND may suffer from the complex changes 
between two images due to its lack of texture information. 

In this paper, we combine both texture and low accurate 
geometric information, and propose a local ordinal intensity 
and normal descriptor (LOIND). The essential idea is to take 
both advantages of the RGB information and the Depth 
information. On the one hand, the depth data is utilized to 
serve as the main discriminative metrics when the scenes have 
image blur, weak illumination and less texture information. 
On the other hand, we utilize rich texture information to 
reduce errors introduced by rough depth information.  

The following Section II provides an overview of the 
related works on local invariant descriptors. Our LOIND 
descriptor is explicitly presented in Sections III. Finally, 
experiments are described in Section IV followed by 
concluding remarks and future works in Section V. 

II. RELATED WORKS 

For RGB descriptors, there are two main categories of 
descriptors, which are based on the relative values and 
absolute values respectively. Relative methods try to construct 
descriptors according to the point-pair-wise comparison of the 
intensity. For example, Brisk[5] is composed as binary strings 
with the results of intensity comparison between randomly 
chosen point pairs. As for methods based on absolute values, 
they usually construct histograms based on intensities or 
gradient orientations. For instance, descriptors such as SIFT [1] 
and GLOH[6] compute the histograms of gradient orientations 
and locations, while SURF [2] computes the histogram of 
Haar wavelet. Generally speaking, the histogram-based 
methods perform better than the binary-based or 
moment-based descriptors because of the richer information 
that the histogram contains. Several other descriptors are 
proposed to combine these two ideas such as OSID [7] and 
LIOP [8]. They compute histograms to combine the relative 
ordering of the pixel intensities and spatial information, which 
are verified to improve upon both of them. 
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Figure 1.  The general diagram of our LOIND descriptor 

However, those 2D descriptors have the inherent limitations, 
such as the requirement on rich texture information and stable 
lighting condition. 

With the depth information, we can construct descriptors 
under the insufficient texture information and severe lighting 
conditions. The depth descriptor can be divided into two 
categories[9], i.e. histogram descriptors and signature 
descriptors. The former ones construct a histogram with 
respect to the neighboring points, while the latter ones 
calculate some values individually of the neighboring points 
and encoders. For example, Histogram of Normal 
Orientations[10] is a normal histogram storing the angle 
between the reference axis and the normal of a neighboring 
point. Besides, SHOT(Signature of Histograms of 
Orientations)[4] is proposed to combine the histograms and 
signatures for better performance and stability. The depth 
descriptors are usually more computationally expensive and 
more reliable to the precision of hardware. 

 In recent years, the descriptors combining varied 
information sources are carried out to enhance the adaptability 
under different image transformation. CSHOT combines 
SHOT descriptor with texture-based descriptor by the way of 
combining histogram and signature. There is also a descriptor 
cascades Spin Image and SIFT [1], it has been validated the 
effectiveness of this combined descriptor will perform better 
than either texture information or depth information alone. 
BRAND is another efficient binary descriptor which combines 
BRIEF descriptor[12] and depth information.  

III. OUR METHOD 

Our descriptor is based on the idea of relative order 
information in both the appearance and depth information. 
The descriptor is constructed by a three-dimensional space, 
shown in figure 1, i.e. intensity, the angle between normal 
vector and the spatial structure, corresponding to texture, 
depth and patch’s spatial structure information respectively. 

A.  Pre-processing and Feature Detector 

Since the process of ordinal intensity and ordinal angel is 
in the pixel level, they are noise-sensitive. So we need to 
smooth the patches and increase stability and repeatability of 
descriptors. Both the RGB and depth images are smoothed by 
the Gaussian filter. A sour descriptor is encoded by the 

intensity ordering, the local intensity-extreme detector, such 
as Harris-affine or Hessian-affine, is used to detect the interest 
point from the RGB images. The detected interest point is also 
employed to the depth image by the coordinate transforming. 

B.Scale estimation 

According to the principle of image formation, the scale of 
a tiny region is approximately inversely proportional to the 
corresponding depth. Thus we can estimate the scale of each 
feature point based on the geometrical information using a 
scale factor s.  For the local patch, with a size of r r, chosen 
based on the point’s depth value, its scale is computed by: 

     (    
          (   )

 
)   

where d is the depth value of keypoint. When d         
  , we need to limit the value of r since Kinect’s 
measurement is not accurate in this range. By the scale 
value we can infer the size of patch: 

r=R*s 

R is the maximum threshold of the radius.  It is 
an empirical value according to our experiment, when 
R=[20,70], image shows the best effect. If scale varies 
gently, we can choose a smaller R. The value of R is roughly 
valuated as: 

           (  
   (        )

   (        )
)  

    and     are the maximum and the minimum scale values 
in the image. The number of pixels in our patch is    .To 
reduce the computational complexity, we normalize each 
patch by shrinking all the patches to a region of fixed size, the 
value of normalization radius is set to20 in our experiment. 

C. Ordinal and Spatial Labeling 

To generate a discriminative RGB-D descriptor, we 
further divided the process into two parts, the encoding of 
spatial distribution and the method of encoding RGB-D 
information. Firstly, the encoding of spatial distribution aims 
to divide the certain range of neighborhood of interest points 
into several sub-regions, under the assumption of the 
relatively local invariant property at the key point. It increases 
the dimension of the descriptor and the information entropy 
attached in each interest point, so the patch can be 
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discriminated by these featured descriptors. Afterwards, the 
RGB-D information in each patch of the interest point is 
encoded into descriptor, and the method of the encoding 
process determines the characteristics of the descriptor and its 
applicable scene. 

Our LOIND divides the local patch into several equal 
sub-regions in the RGB image, the sub-regions division in 
depth image is the same as the RGB image. The encoding is 
then established from the relative ordering space by building 
the histogram from three dimensions, i.e. the spatial space, 
relative ordering space of the intensity and relative ordering 
angle space of the normal vectors.  

Spatial distribution 

We first denote the interest point as the center and extract a 
circle patch around it with the radius of d in RGB image plane. 
Then we divide the patch into npies sectors,  and calculate the 
pixel distribution in each sector. Each sector can be regarded 
as an encoding unit in the spatial distribution, we then encode 
the intensity and depth information for each sector in the 
relative ordering spaces. 

Encoding for ordinal distribution 

After dividing the patch around the interest point, we can 
encode the information in each sector. All the encoding is 
adapted by pixel’s position, intensity and depth values based 
on relative ordering. 

Instead of building the statistical histogram in the 
absolute intensity space, our method transfers the intensity 
values to the relative intensity space with respect to the center 
interest point for each pixel in the patch, shown in 
figure1(c).  All the pixels in the sector are then sorted based on 
their relative intensity values with respect to the center points. 
According to the ranking of all the pixels in the patch, we 
group the relative intensity values into nbins bins, where each 
bin has the same number of the relative intensity values. For 
example, if there are N different relative intensity values in the 
relative intensity space which is divided into nbins bins, then 
each bin contains N/nbins relative intensity values. The 
histogram can be generated by calculating the number of the 
pixels whose relative intensity values are belonging to the 
corresponding bins.  This relative ordering based histogram 
can avoid inconstant intensity values caused by illumination 
changes. Although the absolute intensity value changes due to 
varied illuminations, the ranking value is usually constant.  

The intensity sorting is implemented by quicksort. In 
order to reduce the computational complexity, the selection 
algorithm is used and thus it can directly obtain the boundary 
value of each bin. 

Ordinal angle between normal vectors 

 We first calculate the normal vector of each pixel in the 
patch to construct the surface normal space, shown in figure 
1(d), and then calculate the dot product between normal vector 
of the center points and the normal vectors of other points in 
the patch, as shown in figure2. 

  The dot product of two vectors is calculated as: 

 (  )     (  )   (  )                     (1) 

 

Figure 2.  Normal vector in depth space 

  ( ) is the normal vector of point x,    represents the 
center of the patch.    is the angle between   (  ) and   (  ), 
then dot product value  (  ) is inversely proportional to 
  .When   =0, (  )        ,  (  )     When    0, 
considering the curve cross two points can be nearly treated as 
a plane, the result may be affected by rough depth value. Thus 
we set: 

 (  )>= ,dbin(  )=1;             (2) 

where   is a threshold to determine whether the two-point 
concave surface approximate flat. For all the dot product 
values that  (  )< ,we will rank the values of the dot product 
with respect to the center point, then the sorted sequence is 
divided into dnbin bins based on the values. Thus the 
depth distribution can be divided into dnbin+1 bins, dnbin 
bins for the sorted values and one additional bin for all those 
plane pixels ( (  )>= ). This method encode the depth 
information into descriptor can greatly improve the 
descriptor’s discriminative capacity, and perform better in the 
circumstance like textureless scene. 

D. Descriptor Construction 

In our LOIND, each local patch is constructed to 
a histogram from three dimensions, where X axis represents 
intensity relative ordering, Y axis is the spatial distribution 
and Z axis is the dot product based relative ordering, i.e. the 
relative ordering of angles. Then we transform the three 
dimension histogram into a vector, and the total dimension is 
nbins*npies*(1+dbins). 

The combination sequence of the intensity, spatial and 
angle will not influence the discriminative capability. 
Generally the ordering variable is arbitrary.  However, 
inconsistent combination sequence may increase the 
probability of miss-matching. So we define the combination 
sequence of x, y, z as intensity, spatial and angle. The relative 
intensity values and relative angles between normal vectors 
are sorted from small values to large values, the sectors (pies) 
of the circled patch is sorted anticlockwise. In order to 
eliminate the effect caused by different patch size, we also 
normalize the descriptor vector into the values of ratio. 

IV. EXPERIMENTS 

In this section, the comparable experiments on stat-of-art 
descriptors are carried out to validate the effectiveness of the 
proposed descriptor. 

A. Dataset and Evaluation Metric 

In the experiments, we use the public RGB-D datasets
1,2

 as 
our benchmark data. For clarity, we only show the comparison 
results on two image pairs chosen from these two datasets  

 
1 https://cvpr.in.tum.de/data/datasets/rgbd-dataset 
2 http://rgbd-dataset.cs.washington.edu/ 
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  (a) original image       (b) image with linear change 

Figure 3.  Image pairs with natural illumination changes 

  

(a)  image with square root change   (b) image with square change 

Figure 4.  Image pairs with synthesized illumination changes 

respectively, which are the handle slam sequence 
freiburg2_desk and the RGB-D Scenes sequence 
kitchen_small_1. 

Except for the publicly available images, we also capture 
image pairs of “dog” in different linear lighting conditions as 
shown in figure 3. To further evaluate the performance under 
complicated lighting conditions, we synthesize two images by 
performing square root and square illumination change with 
respect to figure 4. These nonlinear transformations bring 
huge challenges to the descriptor. 

We employ four state-of-art descriptors in the comparison 
experiments. As for evaluation, we use the metric proposed by 
Mikolajczyk and Schmid [6]. We perform the threshold based 
matching on all pairs of keypoints in the corresponding image 
pairs.  If the Euclidean (for SIFT, SURF, CSHOT) or 
Hamming (for BRAND) distance to the nearest neighbor is 
below a threshold t, this pair is regarded as valid match.  

B.  Parameter setting 

We discuss the influences of our parameters by 
experiments to find the appropriate parameter setting. 

The sigma in smoothing: Experimentally, we found that 
image smoothing can significantly reduce noise and improve 
the performance of our descriptors. As validated in the 
experiments, we use 5*5 Gaussian kernels and set sigma=1 in 
the 2D images. As for the noisy depth image, we use 10*10 
kernels with sigma=2. 

Normal vector estimation: Normal vector can be 
estimated by PCA on the nearest neighbors [13].For each 
point, we centralize the 3D coordinates of its nearest 
neighbors, and calculate the covariance matrix and the 
corresponding eigenvalues. Then the normal vector is the 
eigenvector with respect to the minimum eigenvalue. 
However, this method is time-consuming. Since the data of 
Kinect can be transformed to organized point cloud, we 
employ the integral image method [14], which is more 
efficient and accurate. Figure 5 shows that the performance of  

 

Figure 5.  Precision-recall  performances under different normal vector 

estimation methods. 

 

Figure 10.     Recognition rate when matching the image against a rotated 

image at every 15 degrees. 

the integral image method is better than that of PCA. 
Moreover, it has significant superiority on the computational 
efficiency. 

Scale factor: The scale factor is chosen according to the 
depth information, the radius of the patch is calculated with 
r=R*s. We use an image pair from freiburg2_desk, there is a 
triple scale transformation between these two images. The 
performance with different R is shown in figure 6(a).  
Considering both matching performance and calculation 
efficiency, we choose R=70 as the best parameter value. If the 
scale change of the image pair is slighter, we can use smaller R 
for more efficiency.  

Numbers of ordinal, spatial and depth bins: We choose 
two image pairs to validate the influence of those parameters. 
Three parameters are set as      (      ) ,       
(      ), and       (     ) respectively. When nbin=1, it 
equals to ignore the affection of depth information. As can be 
seen, the performance is promoted by adding the depth 
information. More patches we use, the descriptor dimension 
will be higher, which is able to contain more texture and depth 
information. However, too many patches will lead to high 
complexity in matching, and sensitive to noises. 

Figure 6(b) and 6(c) show the performances of varied 

combinations of the nbin, npies and ndbins. The performance 

of nbins = 16 is better than that of nbins=4, 8, while npies=8 

performs bestand  ndbins performs better when setting as 3 or 

2. To balance the efficiency and performance, we choose the 

dimension as (nbin*npies*ndbins)= 8*8*3=192.  

C.  Performance evaluation 

We compare the matching performance of our LOIND and 
the other four methods as shown in figure 7, 8, 9. For all the 
descriptors, keypoints or regions are detected by harris-affine  
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(a)                 (b)                 (c) 

Figure 6.   Precision-recall performance under different parameters. (a) Performances under different normal vector estimation methods. (b)(c) 

Performances under different scale factors, where (b) is performed on freiburg2_desks sequence and (c) is performed on kitchen_small_1sequence

method.  We have selected the same two sequences from the 
datasets which include scale transform, viewpoint change and 
noise depth and texture. The precision-recall curves in figure 7 
and figure 8 show that our LOIND outperforms the other 
methods on each datasets, and figure 9 shows that our LOIND 
also performs better on the image pairs we captured above 
with the non-linear illumination changes. 

D. Orientation estimation 

To realize rotation invariance, we normally use the RGB 
texture information to calculate the dominant orientation. If 
the lighting condition is poor and the texture information is 
missing, we propose to estimate the dominant orientation 

completely according to depth information. In our approach, 
we find the pixels with  (  )<  and calculate the dot product 
between the normal vectors attaching with these pixels and the 
normal vector of the central point for each pie. Then we obtain 
the pie with smallest mean dot product, which means this pie 
has the largest angle to the central point. The dominant 
orientation is then denoted as the orientation of this pie. The 
starting pie in spatial distribution should be set from the 
patch’s dominant orientation. In figure 10, we test the 
recognition rate of rotation under poor lighting and noisy 
texture situation, results show that our method performs 
well and stable. 

V. CONCLUSION AND FUTURE WORKS 

LOIND is a novel RGB-D descriptor that is invariant to 

scale transform and robust to linear or nonlinear brightness 

changes. The core idea is relative ordering, encoding both 

texture and depth information. In fact, most of the transform 

will not affect the intensity ordering or geometric structure. 

Thus experiments shows that LOIND can achieve better 

performance than state-of-art descriptors, including typical 

RGB descriptors, SIFT, SURF, and the RGB-D descriptors 

e.g. BRAND and CSHOT, which are also based on the 

combination of geometric and appearance. Meanwhile, when 

the situation that illumination is extremely weak, we propose 

a dominant direction estimation method from purely depth 

information, our method can provide accurate dominant 

direction when the illumination is extremely poor or there is 

less texture information. 

The main limitation of RGB-D descriptor lies on the 

accuracy of depth sensor. So the future work may focus on 

encoding discriminative RGB-D descriptor without losing 

that information and provide adaptive RGB-D descriptor 

driving by data. 
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Figure 7.  Comparison results on freiburg2_desks data set with two image pairs 

 
Figure 8.  Comparison results on kitchen_small_1data set with two image pairs 

 
                                          (a)  Image pair of figure 3(a) and (b)                                           (b) Image pair of figure 3(a) and figure 4 (a)  

 
                                          (c)  Image pair of figure 3(a) and figure 4(b)                          (b) Image pair of figure 4(a) and figure 4 (a)  

Figure 9.  Comparison results on varied illumination conditions

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1-precision

re
c
a
ll

 

 
LOIND

SIFT

SURF

BRAND

CSHOT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1-precision

re
c
a
ll

 

 
LOIND

SIFT

SURF

BRAND

CSHOT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1-precision

re
c
a
ll

 

 

LOIND

SIFT

SURF

BRAND

CSHOT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1-precision

re
c
a
ll

 

 
LOIND

SIFT

SURF

BRAND

CSHOT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1-precision

re
c
a
ll

 

 
LOIND

SIFT

SURF

BRAND

CSHOT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1-precision

re
c
a
ll

 

 
LOIND

SIFT

SURF

BRAND

CSHOT

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1-precision

re
c
a
ll

 

 

LOIND

SIFT

SURF

BRAND

CSHOT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1-precision

re
c
a
ll

 

 

LOIND

SIFT

SURF

BRAND

CSHOT

1898

Authorized licensed use limited to: Zhejiang University. Downloaded on February 25,2021 at 06:01:45 UTC from IEEE Xplore.  Restrictions apply. 


