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Abstract—Small object detection remains an unsolved chal-
lenge because it is hard to extract information of small objects
with only a few pixels. While scale-level corresponding detection
in feature pyramid network alleviates this problem, we find
feature coupling of various scales still impairs the performance
of small objects. In this paper, we propose an extended feature
pyramid network (EFPN) with an extra high-resolution pyramid
level specialized for small object detection. Specifically, we design
a novel module, named feature texture transfer (FTT), which
is used to super-resolve features and extract credible regional
details simultaneously. Moreover, we introduce a cross resolution
distillation mechanism to transfer the ability of perceiving details
across the scales of the network, where a foreground-background-
balanced loss function is designed to alleviate area imbalance of
foreground and background. In our experiments, the proposed
EFPN is efficient on both computation and memory, and yields
state-of-the-art results on small traffic-sign dataset Tsinghua-
Tencent 100K and small category of general object detection
dataset MS COCO.

I. INTRODUCTION

Object detection is a fundamental task of many advanced
computer vision problems such as segmentation, image caption
and video understanding. Over the past few years, rapid devel-
opment of deep learning has boosted the popularity of CNN-
based detectors, which mainly include two-stage pipelines [1]-
[4] and one-stage pipelines [5]-[7]. Although these general
object detectors have improved accuracy and efficiency sub-
stantially, they still perform poorly when detecting small
objects with a few pixels. Since CNN uses pooling layers
repeatedly to extract advanced semantics, the pixels of small
objects can be filtered out during the downsampling process.

Utilization of low-level features is one way to pick up
information about small objects. Feature pyramid network
(FPN) [8] is the first method to enhance features by fusing fea-
tures from different levels and constructing feature pyramids,
where upper feature maps are responsible for larger object
detection, and lower feature maps are responsible for smaller
object detection. Despite FPN improves multi-scale detection
performance, the heuristic mapping mechanism between pyra-
mid level and proposal size in FPN detectors may confuse
small object detection. As shown in Figure 1(a), small-sized
objects must share the same feature map with medium-sized
objects and some large-sized objects, while easy cases like
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(a) Mapping between pyramid level and proposal size in vanilla FPN detectors.
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(b) Detection performance of original P> and our P2’ on Tsinghua-Tencent
100K.

Fig. 1. The drawback of small object detection in vanilla FPN detectors.
(a)Feature Coupling: Both small and medium objects are detected on the
lowest level (P2) of FPN. (b)Poor Performance of Small Objects on Pa:
The detection performance of P» varies with scale, and the average precision
(AP) and average recall (AR) decline sharply when instances turn small. The
extended pyramid level P; in our EFPN mitigates this performance drop.

large-sized objects can pick features from a suitable level.
Besides, as shown in Figure 1(b), the detection accuracy and
recall of the FPN bottom layer fall dramatically as the object
scale decreases. Figurel suggests that, feature coupling across
scales in vanilla FPN detectors still degenerates the ability of
small object detection.

Intuitively, another way of compensating for the information
loss of small objects is to increase the feature resolution. Thus
some super-resolution (SR) methods are introduced to object
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detection. Early practices [9], [10] directly super-resolve the
input image, but the computational cost of feature extraction
in the following network would be expensive. Li et al. [11]
introduce GAN [12] to lift features of small objects to higher
resolution. Noh et al. [13] use high-resolution target features
to supervise SR of the whole feature map containing context
information. These feature SR methods avoid adding to the
burden of the CNN backbone, but they imagine the absent
details only on the basis of the low-resolution feature map, and
neglect credible details encoded in other features of backbones.
Hence, they are inclined to fabricate fake textures and artifacts
on CNN features, causing false positives.

In this paper, we propose extended feature pyramid network
(EFPN), which employs large-scale SR features with abundant
regional details to decouple small and medium object detec-
tion. EFPN extends the original FPN with a high-resolution
level specialized for small-sized object detection. To avoid
expensive computation that would be caused by direct high-
resolution image input, the extended high-resolution feature
maps of our method is generated by feature SR embedded
FPN-like framework. After construction of the vanilla feature
pyramid, the proposed feature texture transfer (FTT) module
firstly combines deep semantics from low-resolution features
and shallow regional textures from high-resolution feature
reference. Then, the subsequent FPN-like lateral connection
will further enrich the regional characteristics by tailor-made
intermediate CNN feature maps. One advantage of EFPN is
that the generation of the high-resolution feature maps depends
on original real features produced by CNN and FPN, rather
than on unreliable imagination in other similar methods. As
shown in Figure 1(b), the extended pyramid level with credible
details in EFPN improves detection performance on small
objects significantly.

Moreover, we introduce a cross resolution distillation mech-
anism, where features generated by large-scale input images
are used as supervision to optimize EFPN with small-scale in-
puts. Under the guidance of high-quality features, the network
with small-scale inputs is able to learn the knowledge how the
large-scale network perceives small object information, and
apply the knowledge on inner modules to improve its own
performance. Thereinto, we design a foreground-background-
balanced loss function. We argue that general reconstruction
loss will lead to insufficient learning of positive pixels, as small
instances merely cover fractional area on the whole feature
map. In light of the importance of foreground-background
balance [7], we add loss of object areas to global loss function,
drawing attention to the feature quality of positive pixels.

We evaluate our method on challenging small traffic-sign
dataset Tsinghua-Tencent 100K and general object detection
dataset MS COCO. The results demonstrate that the proposed
EFPN outperforms other state-of-the-art methods on both
datasets. Besides, compared with multi-scale test, single-scale
EFPN achieves similar performance but with fewer computing
resources.

For clarity, the main contributions of our work can be
summarized as:

« We propose an extended feature pyramid network (EFPN)

which improves the performance of small object detec-

tion.

o We design a pivotal feature reference-based SR module
named feature texture transfer (FTT), to endow the ex-
tended feature pyramid with credible details for more
accurate small object detection.

o We introduce a cross resolution distillation strategy to
learn the ability of perceiving object details from larger-
scale network. A foreground-background-balanced loss
function is designed in distillation to draw attention on
positive pixels, alleviating area imbalance of foreground
and background.

e Our efficient approach significantly improves the per-
formance of detectors, and becomes state-of-the-art on
Tsinghua-Tencent 100K and small category of MS
COCO.

II. RELATED WORK

In this section, we firstly introduce deep learning based
general object detectors, and then discuss relevant small object
detection methods including utilizing cross-scale features and
combining with super-resolution.

A. Deep Object Detectors

Deep learning based detectors have ruled general object
detection due to their high performance. The successful two-
stage methods [1]-[4] firstly generate Regions of Interest
(Rols), and then refine Rols with a classifier and a regres-
sor. One-stage detectors [5]-[7], another kind of prevalent
detectors, directly conduct classification and localization on
CNN feature maps with the help of pre-defined anchor boxes.
Recently, anchor-free frameworks [14]-[17] also become in-
creasingly popular. Despite of the development of deep ob-
ject detectors, small object detection remains an unsolved
challenge. Adaptive convolution module is proposed in [18]
to enhance features on the area of concerned small objects.
To enrich context information, dilated convolution [19] is
introduced in [20]-[22] to augment receptive fields for multi-
scale detection. Besides, directly adding context attention [23]
is also an effective way to enhance detectors’ performance.
However, general detectors tend to focus more on improving
the performance of easier large instances, since the metric
of general object detection is average precision of all scales.
Detectors specialized for small objects still need more explo-
ration.

B. Cross-Scale Features

Utilizing cross-scale features is an effective way to alleviate
the problem arising from object scale variation. Building
image pyramids is a traditional approach to generating cross-
scale features. Use of features from different layers of network
is another kind of cross-scale practice. SSD [5] and MS-
CNN [24] detect objects of different scales on different layers
of CNN backbone. FPN [8] constructs feature pyramids by
merging features from lower layers and higher layers via
a top-down pathway. Following FPN, FPN variants explore
more information pathways in feature pyramids. PANet [25]
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(b) The pipeline of EFPN.

Fig. 2. The framework of extended feature pyramid network (EFPN). Here C; denotes the feature map from stage ¢ of CNN backbone, and P; denotes
the corresponding pyramid level on EFPN/FPN. The dash line between C and C% in (b) means C2 and CY are parallel on the 2nd stage of backbone and
share similar semantic information. Top 4 layers of EFPN are vanilla FPN layers. Feature texture transfer (FTT) module integrates semantic contents from
P3 and regional textures from Pp. And then, an FPN-like top-down pathway passes FTT module output down to form the final extended pyramid level P.
The extended feature pyramid (Py, P2, P3, P4, Ps) will be fed to the following detector for further object localization and classification.

adds an extra down-top pathway to pass shallow localization
information up. M2Det [26] introduces a U-shape module
to enhance multi-scale features. NAS-FPN [27] delves into
optimal pathway configuration using AutoML. Though these
FPN variants improve the performance of multi-scale object
detection, they continue to use the same number of layers
as original FPN. But these layers are not suitable for small
object detection, which leads to still poor performance of small
objects.

C. Super-Resolution in Object Detection

Some studies introduce SR to object detection, since small
object detection always benefits from large scales. Image-level
SR is adopted in some specific situations where extremely
small objects exist, such as satellite images [28] and im-
ages with crowded tiny faces [29]. But large-scale images
are burdensome for subsequent networks. Instead of super-
resolving the whole image, SOD-MTGAN [10] only super-
resolves the area of Rols, but large quantities of Rols still
need considerable computation. The other way of SR is to
directly super-resolve features. Li et al. [11] use Perceptual
GAN to enhance features of small objects with the charac-
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teristics of large objects. Noh et al. [13] super-resolve the
whole feature map and introduce supervision signal to training
process. These GAN-based frameworks are hard to train and
are not efficiently combined with multi-scale feature pyramids.
STDN [30] employs sub-pixel convolution on top layers of
DenseNet [31] to detect small objects and meanwhile reduce
network parameters, but it is based on restricted information
from a single feature map. Single-image super-resolution [32]-
[34] tends to fabricate regional details, which harms precise
object location. Recent reference-based SR methods [35], [36]
have capacity of enhancing SR images with textures or con-
tents from reference images. Enlightened by them, we design
a novel module to super-resolves features under reference and
extend FPN, thus generating features with credible details
more suitable for small object detection.

III. OUR APPROACH

Since the feature coupling of various scales and unsuitable
mapping between pyramid level and object size would degen-
erate the performance of detectors, we propose an extended
feature pyramid network (EFPN) to decouple detection of
objects with different sizes and allocate a more suitable feature
level for small objects.

First, we construct an extended feature pyramid, which is
specialized for small objects with a high-resolution feature
map at the bottom. Small objects are assigned to this layer
owing to its rich regional information. To strengthen the
extended layer, we design a novel module named feature
texture transfer(FTT), to generate intermediate features for
the extended feature pyramid. Moreover, we employ cross
resolution distillation where a new foreground-background-
balanced loss function is proposed to further enforce learning
of positive pixels. The pipeline of EFPN network and FTT
module is explained in Sec. III-A and Sec. III-B, and Sec. III-C
elaborates our cross resolution distillation design.

A. Extended Feature Pyramid Network

Vanilla FPN constructs a 4-layer feature pyramid by upsam-
pling high-level CNN feature maps and fusing them with lower
features by lateral connections. Although features on different
pyramid levels are responsible for objects of different sizes,
small object detection and medium object detection are still
coupled on the same bottom layer P of FPN, as shown in
Figure 1. To relieve this issue, we propose EFPN to extend
the vanilla feature pyramid with a new level, which accounts
for small object detection with more regional details.

We implement the extended feature pyramid by an FPN-
like framework embedded with a feature SR module. This
pipeline directly generates high-resolution features from low-
resolution images to support small object detection, while stays
in low computational cost. The overview of EFPN is shown
in Figure 2(b).

Top 4 pyramid layers are constructed by top-down pathways
for medium and large object detection. The bottom extension
in EFPN, which contains an FTT module, a top-down pathway
and a purple pyramid layer in Figure 2(b), aims to capture
regional details for small objects. In EFPN, we denote the

TABLE I
GENERATION OF Cé IN RESNET/RESNEXT BACKBONES. A NEW BRANCH
WITHOUT MAX-POOLING IN STAGE2 IS ADDED TO GENERATE Cé,
SIMULATING THE SEMANTICS AND RESOLUTION OF C'2 FROM 2X INPUT
IMAGE. THE BRANCHES OF Cy AND Cé SHARE THE SAME WEIGHTS. IN
EFPN, C2 AND Cé ARE GENERATED SIMULTANEOUSLY FROM 1 X INPUT.

Layer Name [ Layer Components

Input 800 x 800(1x) 800 x 800(1x)

Stagel 7 X 7, 64, stride 2 7 X 7, 64, stride 2
. 3 X 3 max pool, stride 2 L

Stage2 residual Blocks X3 residual blocks %3

Output C5:(200 x 200) C7:(400 x 400)

feature maps which share the same semantic level with C;/P;
from vanilla FPN but with higher resolution as C{/P/. More
specifically, in the extension, the 3rd and 4th pyramid layers
of EFPN which are denoted by green and yellow layers
respectively in Figure 2(b), are mixed up in the feature SR
module FTT to produce the intermediate feature Pj with
selected regional information, which is denoted by a blue
diamond in Figure 2(b). And then, the top-down pathway
merges P; with a tailor-made high-resolution CNN feature
map C2/, producing the final extended pyramid layer Pj.
We remove a max-pooling layer in ResNet/ResNeXt stage2,
and get C as the output of stage2, as shown in in Table I.
C), shares the same representation level with original C5 but
contains more regional details due to its higher resolution.
And the smaller receptive field in C also helps better locate
small objects. Mathematically, operations of the extension in
the proposed EFPN can be described as

Py = P5 1oy +C} (1)

where 19, denotes double upscaling by nearest-neighbor in-
terpolation.

In EFPN detectors, the mapping between proposal size and
pyramid level still follows the fashion in [8]:

1= |lo + loga(Vwh/224) | )

Here [ represents pyramid level, w and h are the width and
height of a box proposal, 224 is the canonical ImageNet pre-
training size, and [y is the target level on which an box
proposal with w x h = 2242 should be mapped into. Since
the detector which follows EFPN fits various receptive fields
adaptively, the receptive field drift mentioned in [13] can be
ignored.

B. Feature Texture Transfer

Enlightened by image reference-based SR [35], we design
FTT module to super-resolve features and extract regional
textures from reference features simultaneously. Without FTT,
noises in the 4th level P, of EFPN would directly pass down
to the extended pyramid level, and overwhelm meaningful
semantics. However, the proposed FTT output synthesizes
strong semantics in upper low-resolution features and critical
local details in lower high-resolution reference features, but
discards disturbing noises in reference.

As shown in Figure 3, the main input of FTT module is the
feature map P; from the 3rd layer of EFPN, and the reference
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Fig. 3. The framework of FTT module. Main semantic contents of input feature P3 are firstly extracted by a content extractor. And then we double the
resolution of the content features by sub-pixel convolution. The texture extractor selects credible regional textures for small object detection from the wrap
of mainstream features and reference features. Finally, residual connection helps fuse the textures with super-resolved content features to produce Py for the

extended feature pyramid.

is the feature map P, from the 4th layer of EFPN. The output
P4 can be defined as

P; = E(P; || Ec(Ps) T2x) + Ec(Ps) T2x 3)

where E¢(-) denotes texture extractor component, E.(-) de-
notes content extractor component, T2 here denotes double
upscaling by sub-pixel convolution [32], and || denotes feature
concatenation. The content extractor and texture extractor are
both composed of residual blocks.

In the main stream, we apply sub-pixel convolution to
upscale spatial resolution of the content features from the
main input P; considering its efficiency. Sub-pixel convolution
augments pixels on the dimensions of width and height via
diverting pixels on the dimension of channel. Denote the
feature generated by convolution layers as F' € R XWxC-r?,
The pixel shuffle operator in sub-pixel convolution rearranges
the feature to a map of shape rH x rW x C. This operation
can be mathematically defined as

PS(F)x,y,c = FLw/TL\_y/rj,C»r~mod(y,r)+C-mod(z,r)+c (4)

where PS(F), , . denotes the output feature pixel on coor-
dinates (z,y,c) after pixel shuffle operation PS(-), and r
denotes the upscaling factor. In our FTT module, we adopt
r = 2 in order to double the spatial scale.

In the reference stream, the wrap of reference feature P> and
super-resolved content feature Ps is fed to texture extractor.
Texture extractor aims to pick up credible textures that are for
small object detection and block useless noises from the wrap.

The final element-wise addition of textures and contents
ensures the output integrates both semantic and regional in-
formation from input and reference. Hence, the feature map
P} possesses selected reliable textures from shallow feature
reference P», as well as similar semantics from the deeper
level Ps.

C. Cross Resolution Distillation

Multi-scale training and testing has already been a general
trick for object detection, since using inputs of higher resolu-
tion is an effective way to improve detection performance on

small objects, as shown in Figure 5. However, the detection
performance saturates at a certain large scale, and the extra
extensive computing resources and runtime brought by multi-
scale testing are unaffordable in practical applications. To this
end, we propose a mechanism termed cross resolution distil-
lation which introduces features from high-resolution inputs
as supervision signals. As shown in Figure 4, middle layers
of FPN with 2x scale inputs are used to guide the training
of student model EFPN with 1Xx-scale inputs. For purpose of
saving GPU memory, teacher model FPN and student model
EFPN share the same parameter weights from top 4 layers of
EFPN. Furthermore, strong knowledge distillation constraints
are enforced on FEFPN, where P32X supervises the learning of
FTT module, and P22X supervises the bottom layer of EFPN.
Feature-level guidance strengthens the model by distilling
knowledge of how larger-scale network deals with regional
details, and teach the skill to SR modules in EFPN. During
testing, our EFPN method is able to perform well on small
objects, which is more efficient using low-resolution inputs
than direct multi-scale practice.

The student model EFPN is trained to optimize the follow-
ing loss function L:

L = Ly (P§, P3™) + Lw(Ph, P5™) (5)

Here P;* is the target P, from 2x input FPN, and P;*
is the target P3 from 2x input FPN. Ly, is our proposed
foreground-background-balanced loss to address area imbal-
ance between small objects and background, and accordingly
improve comprehensive quality of EFPN.

Common global loss will lead to insufficient learning of
small object areas, because small objects only make up
fractional part of the whole image. Foreground-background-
balanced loss function improves the feature quality of both
background and foreground by two parts: 1) global reconstruc-
tion loss 2) positive patch loss.

Global construction loss mainly enforces resemblance to the
real background features, since background pixels consist most
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Fig. 5. Larger input scale brings performance gain in small object detection.
Here APs and ARs denote the average precision and average recall of small
objects on Tsinghua-Tencent 100K.

part of an image. Here we adopt [y loss that is commonly used
in SR as global reconstruction 10ss L g;5:

Lgiop(F, F') = ||F* — F||, (6)

where F' denotes the generated feature map, and F* denotes
the target feature map.

Positive patch loss is used to draw attention to positive
pixels, because severe foreground-background imbalance will
impede detector performance [7]. We employ [; loss on
foreground areas as positive patch loss Lgjop:

1
RTINS

(%9) EPpos

1Py = Faglh (D)

where P,,, denotes the patches of ground truth objects, NV
denotes the total number of positive pixels, and (z,y) denotes
the coordinates of pixels on feature maps. Positive patch loss
plays the role of a stronger constraint for the areas where
objects locate, enforcing learning true representation of these
areas.

The foreground-background-balanced loss function L sy, is
then defined as

Lfbb(Fa Ft) = Lglob(Fa Ft) + )\Lpos(Fa Ft) (8)

where A\ is a weight balancing factor. The balanced loss
function mines true positives by improving feature quality of
foreground areas, and kills false positives by improving feature
quality of background areas.

1V. EXPERIMENTS
A. Experimental Settings

1) Benchmark Datasets: We experiment our method on two
benchmarks, including traffic-sign detection scenes specialized
for small objects and general detection scenes. We compare
our method with baselines and other state-of-the-arts on both
scenes.

Tsinghua-Tencent 100K [37] is a dataset for traffic-
sign detection and classification. It contains 100,000 high-
resolution (2400 x 2400) images with 30,000 traffic-sign
instances. Importantly, in fest set, 92% of instances cover
an area less than 0.2% of the entire image. The dominant
majority of small objects in Tsinghua-Tencent 100K make it
an excellent benchmark for small object detection.

Microsoft COCOMS COCO) [38] is a widely-used large-
scale dataset for general object detection, segmentation and
captioning. It consists of three subsets: the train subset with
118k images, the val subset with 5k images, and the test-
dev subset with 20k images. Object detection on MS COCO
confronts three challenges: (1) small objects: the size of about
65% of instances is less than 6% of the image size. (2) more
instances in a single image than other similar datasets (3)
different illumination and shapes of objects.

2) Evaluation Metrics: In both Tsinghua-Tencent 100K and
MS COCO, instances in images are divided into three scales
according to their area: small subset with area < 322, medium
subset with 322 < area < 962, and large subset with area >
962.

For Tsinghua-Tencent 100K, following the protocol in [11],
[13], [37], we select 45 classes with more than 100 instances
for evaluation, and report accuracy/recall at IoU=0.5 of three
scales. Moreover, we introduce F1 score to evaluate detector’s
performance comprehensively.

Pl 2 - Precision - Recall

©)

Precision + Recall
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TABLE II
EFFECT OF EACH COMPONENT IN EFPN ON TSINGHUA-TENCENT 100K fest SET.
. . e Small Medium Large
Extended Pyramid Level Cross Resolution Distillation — Feature Texture Transfer Acc Rec  TFT T Acc Rec. FT T Acc Ree Tl
802 869 834|944 944 944929 930 929
v 804 869 835|942 945 944|930 93.0 93.0
v v 82.8 86.1 844 | 956 942 949|950 919 934
v v v 83.6 87.1 853 | 950 952 951 | 928 932 93.0
Though straightforward, accuracy/recall metric highly de- TABLE III

pends on a man-made confidence threshold, because it only
evaluates the results with confidence higher than the threshold.
Thus we also use average precision (AP) and average recall
(AR) metric, with average precision/recall over all confidence
threshold, to remove the relevance to confidence.

In MS COCO, despite of confidence, the AP and AR are
also averaged over 10 IoU thresholds (ToU = 0.5 : 0.05 : 0.95),
which reward detectors with better localization.

3) Implementation Details: We implement our proposed
EFPN with a Faster R-CNN detector, where ResNet-50 and
ResNeXt-101 [39] are used as backbones. The original Faster
R-CNN with FPN is firstly trained as baseline. Then, we
train EFPN with backbones and heads freezed. When EFPN
converges, we finetune a new detector head for the extended
pyramid level with the help of OHEM [40], because there
is always a gap between the extended feature map P; and
the target map P» from 2x input image. During inference,
the new detector head outputs small bounding boxes from the
extended pyramid level, and the original detector head outputs
medium and large bounding boxes from top 4 pyramid levels.
In the end, all predicted boxes from different pyramid levels
are combined to yield the final detection result.

We employ 2 residual blocks for content extractor and
texture extractor in texture transfer module. The weight A\ for
balancing foreground and background in training loss is set to
1.

In Tsinghua-Tencent 100K experiment, we augment each
class to about 1000 instances by random crops and color jitter
owing to uneven numbers of different classes. Those labels
not included in evaluating 45 classes are also used in training
for better generalization. The model is trained on train split
and tested on fest split. Images are resized to 1400 x 1400,
and Rols of size smaller than 56 are assigned to the pyramid
level Py accordingly.

In MS COCO experiment, we follow the training scheme in
Detectron [41], and add data augmentation of scale and color
jitter. The model is trained on frain split, and tested on test-
dev split. Images are resized to 800 on the shorter side, and
Rols with size smaller than 112 are assigned to the pyramid
level P} accordingly.

B. Ablation Studies

We conduct ablation experiments to validate the efficiency
of EFPN and the contribution of each network compo-
nent. Ablation studies are based on Tsinghua-Tencent 100K
dataset, and Faster R-CNN with the backbone of ResNeXt-
101 are adopted as base model. All the models are trained

EFFICIENCY VALIDATION OF EFPN ON TSINGHUA-TENCENT 100K. HERE
FPN-1400/FPN-2800/EFPN-1400 DENOTES FPN/EFPN TEST WITH
1400(1x)/2800(2x) INPUT, AND FPN-1400 + P>-2800 MEANS WE USE
TRAINING TARGET P> FROM FPN-2800 AS THE EXTENDED PYRAMID
LAYER TO FORM AN EXTENDED FEATURE PYRAMID.

Model [Flg Flp Flg [Runtime(s) GPU Memory(MB)
FPN-1400 834 944 929 0.45 2285
FPN-2800 85.0 942 72.1 1.42 6349

FPN-1400 + P»-2800 | 85.0 95.0 93.1 1.68 7217
EFPN-1400 w/o FTT | 83.8 94.8 93.1 0.84 4767
EFPN-1400 85.3 95.1 93.0 1.05 4899

on Tsinghua-Tencent 100K frain split and tested on fest split.
Results are presented in Table III and Table II.

1) EFPN is efficient on computation and memory: As
shown in Table IIl, we compare the performance of EFPN
with FPN test of different scales. All the models are tested
on a single GTX 1080Ti GPU. Large input scale in FPN-
2800 improves the F1 score of small objects by 1.6%, but
sacrifices the performance of large objects sharply by 20.8%
on F1 score. Combining FPN-1400 and P» from FPN-2800
achieves multi-scale high performance, but the computational
cost of runtime and GPU memory is more expensive than
2x test. Our proposed EFPN realizes the same high precision
as FPN-1400 + P»-2800, but with affordable computational
cost between 1x test and 2x test of FPN. Besides, we also
replace the FTT module with a nearest-neighbor interpolation
to test the model complexity brought by FTT. The test results
indicate that the pivotal module FTT significantly improves
the detection performance, but adds only a small part of
computational resource. On account of feature-level SR and
cross resolution distillation design, EFPN efficiently achieves
the precision of multi-scale FPN test through single forward
propagation.

2) The extended pyramid level alone is not enough: We test
effect of the extended feature pyramid without FTT module
and cross resolution distillation, since FPN-1400 + P5-2800
performs well in Table III. ESPCN [32] is an SR method
based on single image input, where a sub-pixel convolution
layer is embedded as well. We replace FTT module with
a three-layer ESPCN, which realizes the same function of
creating intermediate upstream feature maps and passing them
to downstream lateral connection in the extension of EFPN.
In addition, without cross resolution distillation, only detection
supervision of RPN and detector head is used. As shown in
Table II, it turns out that the extended pyramid level without
FTT module and knowledge distillation has a limited effect,
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TABLE IV
EFFECT OF EACH COMPONENT IN CROSS RESOLUTION DISTILLATION.
Loss on the Extended Level Balanced Loss Loss on Feature Texture Transfer Small Medium Large
Acc. Rec. Fl Acc. Rec. Fl Acc. Rec. Fl
804 869 835|942 945 944 ] 93.0 930 93.0
v 80.6 87.0 83.7 | 940 944 942 | 934 926 93.1
v v 81.6 868 84.1 | 949 945 947 | 944 922 933
v v v 82.8 86.1 844 | 956 942 949 | 950 919 934
Objects FPN p, Target SISR FTT Objects FPN p, Target SISR

! l]\ﬂ§$ H'EE

Fig. 6. Visualizing the quality of features for small object detection from different methods. Here Target denotes FPN P, from 2x input, SISR denotes P
produced from ESPCN [32], and FIT denotes Py produced from FTT. Stronger resemblance to target features and clearer object boundaries are achieved by

FTT, which is beneficial for preciser detection.

improving F1 score of small category by only 0.1%. Scarcely
any extra missing small objects are called back by the extended
pyramid level alone.

3) Cross resolution distillation is crucial: Our proposed
knowledge distillation mechanism is added to the extended
feature pyramid with ESPCN embedded. Under the guidance
of large-scale features, the overall performance of the extended
pyramid improves. As shown in Table II, the accuracy of small
category rises by 2.4, thus bringing gain of 0.9 on F1 score.
And the F1 scores of medium and large subsets also rise by
0.5 and 0.4 respectively. We infer the reason may be that some
medium objects shrink after image resizing and are allocated
to the extended pyramid level P, for detection.

To delve into the effect of foreground-background-balanced
loss function and dual supervision on extended pyramid level
and feature SR module, we conduct an ablation study inside
the cross resolution distillation mechanism. We follow the
setting of EFPN with ESPCN embedded. As suggested by
Table IV, without foreground-background-balanced loss func-
tion, global loss on the extended pyramid level PQ’2X plays
a limited role, and improves F1 score of small category by
merely 0.2%. The balanced loss function encourages mean-
ingful change on the positive areas of the extended feature
maps, which raises the F1 score of small/medium/large by
0.4%/0.5%/0.2%. Besides, dual supervision on both PQ’2X and
Pfx further improves F1 score of small/medium/large by
0.3%/0.2%/0.1%, which suggests that dual supervision on
extended pyramid level and feature SR module would force
useful regional object details shift from large-scale network.

Moreover, we also attempt different configuration of the
balancing hyper-parameter A. When X is set to 0.5/1.0/1.5, we
get F1 score of 84.8/85.3/85.1 on small category. Hence we
adopt A = 1.0 to achieve better balance between accuracy and
recall.

TABLE V
COMPARISON OF THE DETECTION PERFORMANCE ON INPUT/OUTPUT OF
FTT MODULE. FTT ENRICHES THE SUPER-RESOLVED OUTPUT P} WITH
INFORMATION ABOUT SMALL OBJECTS.

Part of FTT Detection Layer \ Flg Fls F1;,
Input Ps-1400 0.0 28.8 83.0
Target P3-2800 10.3 732 71.6
Output P3-1400 7.3 69.2 86.4

4) FTT module further enhances the quality of EFPN:
Finally, we replace ESPCN with our proposed FTT module.
In Table II, it increases accuracy and recall of small category
by 0.8% and 1.0%, respectively. Compared to single image SR,
FTT module digs out more hard small cases. In the meanwhile,
FTT module also ensures fewer false positives by reducing
artifacts on the background.

In order to give a more intuitive demonstration of the
function of FTT module, we carry out a quantitative exper-
iment in Table V, where objects are directly detected on the
features from FTT module rather than on the pyramids. In
Table V, we find that the feature P5-1400 before SR process
is dramatically poorer at small object detection than cross res-
olution distillation target. Our proposed FTT narrows the gap,
achieving 7.3%/40.4%/3.4% performance gain on the output
for small/medium/large subset respectively. Accordingly, FTT
module transfers more information of small-sized objects to
the SR output, and then passes it down to the extended pyramid
level for better detection.

The superiority of FTT module can also be proved by
Figure 6, where we visualize the features w/wo FTT module.
The features from FTT module resembles target features more,
and have clearer boundaries between object areas and back-
ground areas. More abundant regional details help detectors to
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TABLE VI

DETECTION PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON TSINGHUA-TENCENT 100K fest SPLIT. EFPN SINGLE-SCALE TEST
USES INPUT IMAGES WITH SIZE OF 1600, AND MULTI-SCALE TEST USES INPUT IMAGES WITH SIZE FROM 1400 TO 2800.

Small Medium Large Overall
Method Test Scale Acc. Rec. F1 Acc. Rec. F1 Acc. Rec. F1 [ Acc. Rec. F1
FRCNN w FPN single 80.2 86.9 83.4 94.4 94.4 94.4 92.9 93.0 92.9 - - -
Zhu et al. [37] single 82.0 87.0 84.4 91.0 94.0 92.5 91.0 88.0 89.5 - - -
Li et al. [11] single 84.0 89.0 86.4 91.0 96.0 93.4 91.0 89.0 90.0 - - -
Liang et al. [42] unknown 84.0 93.0 88.3 95.0 97.0 96.0 96.0 92.0 94.0 - - -
Noh et al. [13] single 82.1 86.6 84.3 93.7 95.5 94.6 92.7 93.7 93.2 89.1 91.9 90.5
: unknown 84.9 92.6 88.6 94.5 97.5 96.0 93.3 97.5 95.4 90.6 95.7 93.1
EEPN single 84.8 89.6 87.1 95.3 95.5 95.4 92.5 93.2 92.8 90.9 93.1 92.0
multi 85.7 92.3 88.9 95.7 96.7 96.2 94.3 97.1 95.7 91.6 95.0 93.3
size: (0,32] size: (32,96] size: (96,400] size: (0,400]
=0 = = =
|9} [} o o
o} o} Q Q
o o4 o o4 & os o os
M — Ours l— Ours M — Ours M — Ours
0 Zhu et al. " Zhu et al. o Zhu et al. 0 Zhu et al.
o M) Auc?curaocsy s T %o o Algcura‘)c‘sy s T o e Algcuraué s o ) o Aoc?curauéy s o

Fig. 7. Comparison of accuracy-recall curves with Zhu et al. [37] on Tsinghua-Tencent 100K fesz, for small (size:(0,32]), medium (size:(32,96]),large
(size:(96,400]) and overall (size:(0, 400]) category respectively.

TABLE VII
COMPARISON OF SINGLE-SCALE TEST WITH STATE-OF-THE-ART GENERAL DETECTION METHODS ON SMALL CATEGORY OF MS COCO fest-dev SET. ALL
RESULTS COME FROM IMAGES RESIZED TO 800 ON THE SHORTER SIDE.

Method Type [ Method Backbone AP APs5g APr5 APg APy, APy,

Noh et al. [13] ResNet-101 34.2 57.2 36.1 16.2 35.7 48.1

SR-Embedded SOD-MTGAN [10] ResNet-101 414 632 454 247 442 526

FPN Variants M2Det [26] VGG-16 41.0 59.7 45.0 22.1 46.5 53.8

’ Libra R-CNN [43] ResNeXt-101 43.0 64.0 47.0 25.3 45.6 54.6

General Detection FSAF [17] ResNeXt-101 429 63.8 46.3 26.6 46.2 52.7

RPDet [44] ResNet-101-Deformable 42.8 65.0 46.3 24.9 46.2 54.7

Ours ResNeXt-101 44.6 64.7 49.4 28.0 47.5 54.2

TABLE VIII TABLE IX
PERFORMANCE COMPARISON WITH FPN BASELINES ON PERFORMANCE COMPARISON WITH FPN BASELINES ON MS COCO val
TSINGHUA-TENCENT 100K test SUBSET. SUBSET.

Method [ Backbone | APs  ARg [ APy, APp  mAP Method [ Backbone | APs  ARg [ APy  APp mAP
FRCNN w FPN ResNet-50 745  84.1 79.7 928 75.8 FRCNN w FPN ResNet-50 209 31.5 40.5 489 373
FRCNN w EFPN ’ 758 85.6 80.8 935 77.0 FRCNN w EFPN ’ 22,7 38.1 41.0 494 382
FRCNN w FPN ResNeXt-101 79.6 87.2 799 90.2 75.5 FRCNN w FPN ResNeXt-101 247  36.0 452 532 41.1
FRCNN w EFPN | "oSheat 817 905 | 820 908 77.6  FRCNN w EFPN | ~o5heat 268 415 | 461 538 423

distinguish positive and negative examples, thus giving better
location and classification.

5) Our method keeps superior under different metrics
with different backbones on different situations: Though we
observe performance gain under accuracy/recall metric on
Tsinghua-Tencent 100K dataset, there are still some fluctuation
on accuracy or recall which does not vary synchronously with
F1 score in experiments above. This is mostly caused by
the man-made confidence threshold setting in accuracy/recall
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metric, because it only evaluates part of the detection results,
as we stated in Sec. IV-A2. Therefore, we replace the metric
with AP/AR, to prove concrete effectiveness of our proposed
method.

We compare the performance of our methods with the
FPN baseline on Tsinghua-Tencent 100K and MS COCO in
Table VIII and Table IX. With ResNeXt-101 backbone, our
EFPN method ensures over 3% gain on AR of small category,
and over 1% gain on AP of small category. In the meanwhile,
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Fig. 8. Qualitative examples comparison between base model FPN and our EFPN on Tsinghua-Tencent 100K (row1&row2) and MS COCO (row3&row). The
left in each pair denotes FPN results, while the right denotes EFPN results. The red boxes represent false negatives, the blue boxes represent false positives,
and the green boxes represent true positives. Detectors of traffic-signs and general objects both profit from EFPN on challenging small object detection.

overall performance on large-sized objects are also guaranteed,
which is shown by higher AP on medium and large subsets
from EFPN.

Under the more strict and fair metric of AP/AR, our exper-
iments prove consistent superiority and great generalization
of EFPN on datasets of Tsinghua-Tencent 100K and MS
COCO with different backbones. Furthermore, we observe
more obvious performance gain under AP/AR than under
accuracy/recall, which better proves the effectiveness of our
method.

C. Comparison with State-of-the-Arts

1) Tsinghua-Tencent 100K: We present our model results
and comparison with other state-of-the-arts on Tsinghua-
Tencent 100K in Table VI. In addition to the metric of
accuracy and recall used by previous studies [11], [13], [37],

[42], we also introduce F1 score to evaluate the balance of the
model’s accuracy and recall.

In Table VI, our proposed method outperforms other meth-
ods not only on small scale, but also on all three scales. EFPN
outperforms state-of-the-art method in [13], 88.9% vs. 88.6%
on small subset, 96.2% vs. 96.0% on medium subset, 95.7%
vs. 95.4% on large subset and 93.3% vs. 93.1% on overall
performance. EFPN particularly demonstrates its competence
in locating and classifying small-sized objects more precisely,
dramatically improves the accuracy of small objects to 85.7%.

In Fig. 7, we present extended pyramid network (EFPN)
results on Tsinghua-Tencent 100K test in the form of accuracy-
recall curves. Accuracy-recall curves compute accuracy and
recall over different confidence thresholds, giving demonstra-
tion of the model’s comprehensive ability. Compared to Zhu
et al. [37], EFPN performs better over all scales, achieving
higher average precision comprehensively.
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2) MS COCO.: We report single-scale model results of our
method and other general detectors on small category of MS
COCO test-dev split. Although the quantity of small objects
is smaller in MS COCO than that in Tsinghua-Tencent 100K,
EFPN still enhances the ability of general object detectors
dramatically. Our model outperforms other state-of-the-art
methods on small objects, and keeps highly competitive on
larger subsets. Good generalization ability makes it robust to
fit with different situations.

D. Qualitative Results

In Figure 8, we present detection examples of Tsinghua-
Tencent 100K and MS COCO. Compared with FPN baseline,
our proposed EFPN recalls tiny and crowded instances better,
and particularly classify small objects more precisely. In the
examples of MS COCO, despite original ground-truth labels
do not include all small objects, our method still detects
objects existing but not labeled, which can be regarded as
reasonable false positive examples.

V. CONCLUSION

In this paper, we propose extended pyramid network to
remedy the problem of small object detection, where a layer
specialized for small objects are generated by the FPN-
like framework. A novel feature texture transfer module is
embedded in the FPN-like framework to efficiently capture
more regional details for the extended pyramid level by
way of reference-based feature-level SR. Additionally, we
introduce cross resolution distillation mechanism to improve
the quality of SR features, where we design a foreground-
background-balanced training loss to alleviate area imbalance
of foreground and background. State-of-the-art performance
on various datasets demonstrate superiority of EFPN in small
object detection.

EFPN can be combined with various detectors, various
backbones to strengthen small object detection, which means,
EFPN can be transferred to more specific situations of small
object detection like face detection or satellite image detection.
For future work, we would like to explore practical applica-
tions of EFPN in more fields.
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