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Abstract— In this paper, we present PocoNet: Point cloud
Online COmpression NETwork to address the task of SLAM-
oriented compression. The aim of this task is to select a compact
subset of points with high priority to maintain localization
accuracy. The key insight is that points with high priority
have similar geometric features in SLAM scenarios. Hence, we
tackle this task as point cloud segmentation to capture complex
geometric information. We calculate observation counts by
matching between maps and point clouds and divide them into
different priority levels. Trained by labels annotated with such
observation counts, the proposed network could evaluate the
point-wise priority. Experiments are conducted by integrating
our compression module into an existing SLAM system to
evaluate compression ratios and localization performances. Ex-
perimental results on two different datasets verify the feasibility
and generalization of our approach.

I. INTRODUCTION

Along with the development of autonomous driving sys-
tems, 3D light detection and ranging (LiDAR) sensors have
shown that its wide usage in the realm of robotics, and
collecting point cloud data during driving has become a key
feature for many intelligent vehicles. As the raw data from
LiDAR sensors, a point cloud, which is composed of points
in 3D space, has also demonstrated its powerful perception
ability of real-world environments. Processing, sharing and
storing point clouds has recently emerged as a crucial com-
ponent for robotics, for example, multi-robot simultaneous
localization and mapping (MR-SLAM). This task requires
point cloud data transmission within limited bandwidth from
multi-robots. Besides, V2X(Vehicle to Everything) network
makes remote computing and remote control possible, which
also intensifies the demand for point cloud data transmitting.

However, streaming point cloud data from LiDAR sensors
are a type of “big data”. For example, raw point clouds
generated from the Velodyne HDL-64 Sensor used in the
KITTI dataset can produce over 100GB of data per hour.
Moreover, loading and processing of original LiDAR point
cloud data and dense maps in SLAM causes computing
and storage intractability since onboard platform on vehicles
has constrained resources. Hence, it is designing a SLAM-
oriented method of compressing this type of data that has
become an indispensable task for autonomous driving sys-
tems.

The task of SLAM-oriented point cloud compression in
this paper is to select a compact subset of points to maintain
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Fig. 1: Visualization of observation counts of 3D LiDAR point
clouds from a raw scan on KITTI. Higher value of a observation
count indicates a stronger contribution on the task of localization.

localization accuracy, i.e., to find fewer 3D points that con-
tain more poses in the whole trajectory. This task is related
to the maximum converge problem, which is regarded as
NP-Hard problems. Note that SLAM-oriented compression
methods are few similarities as compared with previous
methods of point cloud compression. To begin with, the aim
of SLAM-oriented compression methods is to preserve the
accuracy of localization after compression, while previous
studies [1]–[8] focus on data encoding. Furthermore, real-
time capability shows a significant role in SLAM-oriented
compression methods. For this reason, point cloud compres-
sion in autonomous driving scenarios must support on-the-fly
operating. Additionally, the desired method should be able
to generalize to new environments with high efficiency.

In the field of visual map compression for localization,
[9]–[13] counted the observation frequency of 2D landmarks
as the score function. [14] applied this idea to 3D point
clouds and utilized the observation count of each point in
the whole trajectory as priority levels for map compression.
As shown in Fig. 1, the points with high observation counts
are mostly distributed in similar parts (e.g., tree trunks,
walls, telegraph poles), which can be observed frequently
for vehicles on roads. As a consequence, we suppose that the
observation counts associate with geometric property, which
indicates that it is feasible to accomplish SLAM-oriented
compression using only one frame data. Motivated by these
earlier researches, we propose a compression network taking
this task as point cloud segmentation. We compute observa-
tion counts of maps as scores and then assign these scores
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to every frame of point clouds from LiDAR. A dynamic
threshold setting strategy for observation counts is proposed
to divide all points into different categories: high priority,
low priority, and ground. Using these annotated points as
supervision, we train PocoNet for point cloud segmentation
to identify point-wise priority levels and then apply different
selection strategies for compression. The contributions of this
work can be summarized as three-fold.

• We propose PocoNet for the compression (i.e., reduc-
tion) of one frame LiDAR data. To our best knowledge,
the proposed network is the first use of deep learning for
SLAM oriented 3D LiDAR point cloud compression.

• Considering application scenarios, we firstly take 3D
LiDAR point cloud data compression as the task of
segmentation. Our network can accomplish on-the-fly
operation with no need for complex handcraft features.

• Evaluation and analysis are performed to demonstrate
that compressed 3D LiDAR point clouds work in SLAM
and localization tasks. Besides, evaluation on the Ford
Campus dataset, where we directly infer using the pre-
trained model on the KITTI dataset, shows that the
generalization ability of our proposed network.

II. RELATED WORK

In this section, we briefly review related existing work
related to our method from two aspects: point cloud com-
pression and deep learning for point cloud segmentation.

A. Point Cloud Compression

As for point cloud compression problem in 3D LiDAR,
most researchers focus on data compression rather than
reduction. Height map-based methods have been studied in
point cloud compression. [15] was the first to propose using
height maps to compress point cloud data, and following
research like [1]–[3] were then developed in response. How-
ever, converting a 3D point cloud into a 2D image will
inevitably result in information loss. [4]–[6] used the raw
packet data from LiDAR and rearranged them to a 2D matrix,
and then using existing image methods to process the data.
[16] proposed a recurrent neural network for point cloud en-
coding to accomplish compression. [17] designed a learning-
based auto-encoder framework by hybrid representation of
adaptive octree and bitstream specifications. These previous
researches are not localization-oriented and can be used to
complementing the task in this paper.

Effective reduction of the map database by finding critical
representations is a popular topic in the vision community.
[9] proposed a scoring function using the observation count
of landmarks for compression and found that landmarks
with high scores served as informative parts in localization.
[10], [11] proposed a prioritization scheme to match 2D
images and 3D point cloud reconstructed by a collection of
images. They show that selecting a reduced set of points
with the high priority is a feasible compression strategy,
as it covers more robot poses or keyframes using a small
amount of points. [12] formulated this task as a mixed-integer
quadratic programming problem. For 3D point clouds, [19],
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Fig. 2: Illustration of calculating observation counts for each map
point at one pose. If there are one or more LiDAR points within
the threshold radius of a map point dth, the observation count of
this map point will be increased by one.

[20] leveraged salient regions extracted from 3D LiDAR
data for scan matching or localization. [14] proposed an
efficient linear programming method to generate compressed
point cloud map for SLAM, and then trained a random
forest model using the map generated above as supervision.
However, it is [14] that can only tackle with point cloud
maps. In other words, this method needs global information
before compression. In this paper, our PocoNet takes only
one frame point clouds from LiDAR to accomplish SLAM-
oriented compression or reduction, only relying on single-
frame geometric information rather than global.

B. Deep Learning for Point Cloud Segmentation

PointNet [21] pioneered the direct processing of raw point
clouds. Inspired by the method above, many recent works
introduced learning-based methods to capture geometric fea-
tures of points. PointNet++ [22] suggested a hierarchical
application of PointNet to explore local structures. PVCNN
[23] improved the efficiency of PointNet-based methods us-
ing voxel-based convolution with a contiguous memory pat-
tern. Such approaches, however, have been limited to address
with small-scale point clouds like object parts and indoor
scenes. For large-scale point clouds like outdoor scenes, it is
difficult for methods mentioned above to satisfy a real-time
latency constraint. SqueezeSeg [24]–[26] and RangeNet++
[27] utilized the spherical projection mechanism to project
3D point clouds to 2D and applied different convolution
operations on projected 2D images. [28] followed bird-view
projection and used polar coordinate system for encoding
system. For processing raw point clouds, it is noteworthy
of mentioning that the most recent RandLA-Net [18] sig-
nificantly improved the speed of point cloud processing in
the novel use of random sampling. As a consequence, our
PocoNet takes RandLA-Net [18] as the baseline to learn
geometric features.

III. METHODOLOGY

A. Problem Statement

We first formulate SLAM-oriented 3D LiDAR point cloud
compression as the task of point cloud segmentation. The
given point cloud is denoted as P which is a point set in a
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Fig. 3: PocoNet Architecture. PocoNet takes all points of one frame data from LiDAR as input and uses Local Feature Aggregation(LFA)
Modules and Random Sampling (RS) in line with RandLA-Net [18] to encode point features. Our Global Feature Attention Module (GFA)
then outputs a global feature codeword with self-attentions. Siamese encoder is utilized to blunt the impact of random sampling for global
feature encoding. Finally, PocoNet outputs point-wise labels (high priority, low priority, and ground).

data frame from LiDAR containing n points p1, p2, . . . , pn ∈
Rd. For 3D LiDAR sensors, the feature vector of each point
pi is its coordinate in 3D space plus its laser intensity value,
(xi, yi, zi, intensityi). The set of annotated labels is denoted
as L, including three categories: high priority, low priority,
and ground, respectively. Points marked as reserved with
high priority that they act as a primary part for localization.

The segmentation of a point cloud for compression is a
function Ψ which assigns labels mentioned above to each
point in the point cloud. i.e.:

Ψ : P "−→ Ln (1)

The objective of this segmentation algorithm is finding opti-
mal function Ψ that selects a subset of critical representative
points. After this procedure, every point in a point cloud P
will be assigned a label mentioned above. The point cloud
compression is carried out by retaining most points marked
as high priority and some ground points, while we remove
others, to generate compressed point clouds Pc, as follows:

P
Ln

−→ Pc (2)

B. Point Cloud Annotation

Here we introduce a method based on observation counts
to annotate labels for each point from a LiDAR scan.

The evaluation of localization performance can be carried
out by calculating the matching accuracy between the map
and point clouds. In order to measure the effect on localiza-
tion performance of each point from one frame LiDAR scan,
it is essential to score the point cloud map by observation
counts. Thus, we construct the map using a sequence of
vehicle poses T = {ti} ∈ SE(3) and their corresponding
laser scans S = {si}, where si represents the point cloud
of a raw scan from LiDAR. The full map is denoted by
Mo = {mi}, where mi stands for the ith point in the map.

Following the scoring method from [14], the definition of
whether a map point mi is observed or not derives from
point cloud matching between Mo and S. Here we utilize
iterative closest point (ICP) as our matching algorithm, which
is one of the most commonly used point cloud registration
approaches in SLAM. Here we calculate the 3D Euclidean
distance dmi,sj between mi and the closest point to mi in
sj . Based on the matched distance dmi,sj after the pose
is estimated, we set the map point as observed with the
following criteria:

Observed =

!
0 dmi,sj ≥ dth

1 dmi,sj < dth
(3)

where dth is a threshold value to decide if mi at one pose
is observed or not. To reduce the sensitivity to high-density
points, we only count once for mi at one pose, although it
may be observed by different si. Given a sequence of poses
T and raw scans S from LiDAR, we can score each map
point mi by aligning the scans to the map and cumulating the
observation counts. As shown in Fig. 2, the scoring process
should fulfil the following strategies:

• A map point cannot be observed multiple times repeat-
edly at one pose.

• The observation counts can be accumulated in different
poses.

Finally, all map points {mi} have their observation score
Cm = {cmi }. The larger count is, the more times a landmark
is observed, the more useful for localization. Further, we
conduct nearest-neighbour searches to assign these obser-
vation Cm from the map Mo to S. Then, we generate
the observation score of raw scans S, which is denoted as
C = {ci}.

It is worth emphasizing that points on the ground should
be individually marked. A possible explanation for this is that
ground points, compared to the number of them, only provide
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Camera View
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Fig. 4: Visualization of points with high priority (colored in red)
on a original LiDAR scan. Intuitively, PocoNet mostly selects
points like tree trunks, walls and some other landmarks to reserve,
however, without semantic information.
plane information on localization in SLAM application. In
addition, due mainly to high densities of ground points, the
observation counts of them usually have large values, which
harms our label annotation. The ground segmentation can
utilize traditional methods like RANSAC [29].

Besides points marked as ground, the remaining points are
required to be labelled based on whether their observation
counts are greater than the threshold value cth. Considering
that observation counts are directly related to the trajectory,
zero or low speed situation in data collection could result
in uneven distribution of annotated labels in S. In order
to address this problem, we present a novel strategy to set
the threshold value dynamically, illustrated in Alg. 1. This
strategy ensures that the number of reserved points remains
consistent between different LiDAR scans and avoids the
influence of the trajectory for label annotation. After these
procedures above, points with annotated labels Ln are pro-
vided to the proposed network as the training data.
C. PocoNet Architecture

1) Overview: Now we introduce the PocoNet in detail,
where the network architecture is illustrated in Fig. 3. Given
a 3D point cloud from LiDAR, PocoNet network aims to
assign point-wise priority labels (high priority, low priority,
and ground) to accomplish SLAM-oriented point cloud com-
pression, as shown in Fig. 4. To capture geometric feature
from point clouds in real-time, PocoNet’s backbone architec-
ture is based on RandLA-Net [18]. It, due to progressively
capturing features of growing scales in a hierarchy approach,
is capable of accomplishing real-time segmentation for large-
scale points, which matches with the demands of our task.

Note that RandLA-Net [18] has not yet been explicitly
leveraging global geometric context. However, capturing

global geometry information acts as a primary factor since
our task is to select a subset from all. To this end, we propose
the Global Feature Attention (GFA) module to extract global
geometric contextual encoding. Besides, two legs of encoder
sharing weights (i.e. siamese encoder) is employed to blunt
the impact of random sampling for encoding global features.

2) Global Feature Attention Module: Traditional methods
like [21] leverage Multi-Layer-Perceptron (MLP) layers to
abstract each feature into higher dimension individually
and a concise max-pooling operation to aggregate them
into a global feature codeword. However, these two simple
operations can hardly capture the correlation in the feature
space. Inspired by [30] [31], the attention mechanism is
suitable for learning the correlation between features. Here
we propose the Global Feature Attention module following
the self-attention mechanism to highlight the different im-
portance of each point for better perceiving global geometric
information.

Algorithm 1 Dynamic Threshold Setting Strategy
Input:

The matrix of observation counts of points, C ∈ RN×1;
The threshold value of reserved percentage, rth;

Output:
The threshold value of the observation count, cth;

1: The minimum number of reserved points, Nth ⇐ N ∗ rth;
2: The maximum observation count in C , cmax;
3: cth ⇐ cmax;
4: Ngreater ⇐ N ;
5: while Ngreater < Nth do
6: Calculate the number of points whose observation count

greater than cth, Ngreater;
7: cth ⇐ cth − 1;
8: end while
9: return cth;

The feature map x is first transformed into two feature
spaces f and g to calculate the attention map, where f(x) =
Wfx, g(x) = Wgx

βi,j =
exp (sij)"D1

i=1 exp (sij)
, where sij = f (xi)

T
g (xj) (4)

and βi,j evaluates the correlation which the model pays to the
ith point when considering the jth feature vector. Then the
attention result is r = (r1, r2, · · · , rj , · · · , rD1) ∈ RD1×D2 ,
where

rj =

D1#

i=1

βj,ih (xi) , where h (xi) = Whxi (5)

In the above formulation, Wf , Wg , Wh are learned weight
matrices, which are implemented as 1× 1 convolutions.

Furthermore, we further concatenate the result above with
the input feature matrix, denoted by oi = xi⊕ri, where ⊕ is
the concatenation operation. This allows the network to rely
on the cues among the feature vectors. Finally, a MLP block
and a max-pooling operation are employed to integrate the
multiple features with correlation information. Via hierarchi-
cally abstracting features from local to global, GFA module
generates a 1024-dimension codeword to represent the global
geometric feature.
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Fig. 5: Visualization of generated maps with using compressed point clouds. (Best viewed with zoom-in.)

3) Loss Funtion: The loss function consists of the global
encoding loss Lglobal and compression label loss Llabel, de-
fined as

Llabel = −Ln log L̂n − (1− Ln) log
$
1− L̂n

%

Lglobal = ‖V1 − V2‖2
(6)

Ln stands for labels annotated in III-B to supervise the
predicted labels L̂n. Global feature codewords generated
from two branches of shared-weighted encoder is denoted
as V1 and V2. For the purpose of blunting the impact of
random sampling, here we use element-wise L2 loss for
global feature encoding to penalize the distance between V1

and V2. Besides, the cross-entropy loss is applied between
Ln and L̂n. The overall loss function is defined as

L = Llabel + λ · Lglobal (7)

where λ is the weighting factor.

IV. EXPERIMENTS

We conduct experiments by integrating our compression
module into an existing SLAM system [14] evaluate com-
pression rates and localization performances. The experi-
mental evaluation is designed to support the critical claims
that our approach can: (i) predict point-wise priority with
only single-frame data in real-time, (ii) represent the whole
trajectory with fewer points, (iii) maintain localization ac-
curacy after compression, (iv) achieve generalization to new
environments.
A. Dataset and Implementation Details

In this section, we evaluate the point cloud compression
on two popular large-scale autonomous driving datasets:
KITTI [32] and Ford Campus [33]. In our experiments,
the sequences 00 ∼ 08 in KITTI is annotated to serve as
supervision for training, and 09 ∼ 10 for testing. Besides,
sequence 00 in Ford Campus is used for experiments of
generalization. The raw 3D points only have 3D coordinates
and intensity values without color information. Considering
application scenarios, we set the threshold value of reserved

percentage rth as 1
12 , which means that the number of

reserved points generally remains around 10000 for one
frame data. The threshold of matched distance for counting
observation counts is set as dth = 0.1m. Here we use
the Adam optimizer with default parameters with an initial
learning rate is set as 10−3 and decreases by 5% after each
epoch. The number of nearest points k is established as 12.
To train our PocoNet in parallel, we sample a fixed number
of points (4096 * 30) as the input. If the number of point
clouds from one frame is less than that fixed number, we
will randomly duplicate some points to keep the quantity
consistent. All experiments are conducted on an NVIDIA
GTX1080Ti GPU.
B. Evaluation Metric

In order to evaluate the performance of the models in
terms of preserving localization accuracy after compression,
we conduct localization experiment (i.e. pose tracking) and
report the compressed sizes and localization errors to demon-
strate the effectivity of the proposed network. The pose of
the first frame is given as the fixed start position. Point-
to-plane ICP is applied for each compressed laser scan,
which uses the previous result as the initial value to achieve
pose tracking. We generate maps from compressed point
clouds with ground truth, and then employ the octree grid
filter following the actual operations. Localization tests are
conducted between maps generated above and compressed
scans. As for the registration process, we use the same set
of parameters for fair testing. To our best knowledge, no
previous work has integrated LiDAR localization with single-
frame point cloud compression. It is noted that 3D keypoint
detection conforms with our task, since both tasks select
a subset of points to represent the whole point cloud for
efficient matching. Hence, we generate compressed point
clouds using these keypoint detection methods: Harris-3D
[34], SIFT [35], Intrinsic Shape Signatures (ISS) [36]. Be-
sides, random sampling and original point clouds (denoted
by Origin) are also evaluated. For the fair comparison, the
parameters of different methods are dynamically set to keep
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Seq 09 Seq 10

Trans mATE(m) Rot mAPE mAPE N rc Trans mATE(m) Rot mAPE mAPE N rc

Origin 0.02065 0.00702 0.02240 17,066,008 43.90% 0.02442 0.00564 0.02563 7,385,291 28.16%
Random 0.03935 0.01156 0.04191 1,742,508 4.48% 0.04474 0.01132 0.04700 1,097,402 4.18%

Harris [34] 0.06147 0.00923 0.06246 2,401,497 6.18% 0.04738 0.00608 0.04799 1,159,490 4.42%
SIFT [35] 0.03382 0.01113 0.03686 1,458,835 3.75% 0.04275 0.00733 0.04384 1,466,450 5.59%
ISS [36] 0.04583 0.01216 0.04895 1,928,035 4.96% 0.06068 0.01028 0.06232 904,020 3.44%

Ours 0.02488 0.00888 0.02710 874,083 2.25% 0.03681 0.00998 0.03918 377,325 1.44%

TABLE I: Quantitative results of localization performances on KITTI [32].

the number of points in one frame after compression in the
same quantity range (8000 ∼ 10000).

C. Localization Performance

The results of localization tests are shown in Tab. I
and Fig. 6. We compare the 6D registration results with
the ground true poses to report Translation mean Absolute
Trajectory Error (Trans mATE), Rotation mean Absolute
Trajectory Error (Rot mAPE) and mean Absolute Pose
Error (mAPE) which considers both translation and ori-
entation error. The number of points of maps (N ) and
compression ratios (rc) from the full map without octree
downsampling are also demonstrated.

Compared to others, our PocoNet achieves the highest
compression rate, i.e., the minimum number of points of
maps (visualized in Fig. 5). Besides, PocoNet generally per-
forms better for localization than other comparative methods.
We attribute this result to the following aspects. To begin
with, our PocoNet retains the points that can be reused many
times in global localization. For this reason, our method,
compared with other non-SLAM-oriented approaches, can
achieve a higher compression rate. Furthermore, as for the
localization performance, landmarks with more observation
counts has better consistency between scan frames, which
are favourable to maintaining localization accuracy.
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Fig. 6: Boxplot of the relative trajectory error statistics in 09. The
middle box spans the first and third quartiles, while the whiskers
are the upper and lower limits. Plot best seen in color.
D. Computational Efficiency

Hand-craft detectors are deployed with single thread C++
codes using PCL [37]. Our proposed method is deployed
with Pytorch [38]. Here the computational efficiency is
evaluated by recording the average time taken to extract com-
pressed points in the same quantity range (8000 ∼ 10000).

As shown in Tab. II, our PocoNet is an order of magnitude
faster than other methods except random sampling.

E. Generaization Ability
To highlight the generalization capabilities of our ap-

proach, we evaluate our model on the Ford campus dataset
while using only KITTI for training. The Ford campus
dataset [33] is recorded on the Ford research campus and
downtown Dearborn in Michigan using a different version of
Velodyne HDL-64E. Here we use a sequence in 01 for testing
our model. Note that we never trained our approach on the
Ford campus dataset or even US roads. Tab. III demonstrates
that our PocoNet also preserves localization accuracy with
fewer points of the map.

Method Random ISS SIFT Harris Ours

Average Time (s) 0.0005 1.8249 7.6425 1.0927 0.0460

TABLE II: Average time to extract the compressed point clouds in
the same quantity range from KITTI, respectively.

Trans
mATE(m)

Rotation
mAPE

mAPE N rc

Origin 0.01962 0.00158 0.01976 6,552,607 23.68%
Random 0.03353 0.00392 0.03401 1,452,985 5.25%

Harris [34] 0.04007 0.00283 0.04027 1,490,501 5.39%
SIFT [35] 0.02606 0.00495 0.02684 1,298,121 4.69%
ISS [36] 0.04245 0.00389 0.04274 1,266,933 4.58%

Ours 0.02525 0.00340 0.02566 1,168,869 4.22%

TABLE III: Quantitative results of localization performances on
Ford Campus [33]. V. CONCLUSIONS

In this paper, we presented a novel approach for SLAM-
oriented point cloud compression. The key insight is that
points with high priority have similar geometric features in
SLAM scenarios. We regard this task as segmentation on
point clouds to capture complex geometric information. We
calculate the observation counts by matching between maps
and point clouds and divide these counts into priority levels.
Trained by labels annotated with such observation counts,
the proposed network could evaluate the priority level of
single-frame point clouds. Exhaustive evaluations on two
different datasets show that our PocoNet achieves the highest
compression rate with better localization accuracy, which
demonstrates the feasibility and generalization ability of our
approach in real robotics applications. Encouraged by our
results, we are considering several avenues to continue ex-
ploring the relationship between priority levels and geometric
features of point clouds in SLAM applications.
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