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Abstract— This paper proposes a LiDAR-Inertial SLAM with
efficiently extracted planes, which couples explicit planes in
the odometry to improve accuracy and in the mapping for
consistency. The proposed method consists of three parts: an
efficient Point→Line→Plane extraction algorithm, a LiDAR-
Inertial-Plane tightly coupled odometry, and a global plane-
aided mapping. Specifically, we leverage the ring field of the
LiDAR point cloud to accelerate the region-growing-based
plane extraction algorithm. Then we tightly coupled IMU pre-
integration factors, LiDAR odometry factors, and explicit plane
factors in the sliding window to obtain a more accurate initial
pose for mapping. Finally, we maintain explicit planes in the
global map, and enhance system consistency by optimizing
the factor graph of optimized odometry factors and plane
observation factors. Experimental results show that our plane
extraction method is efficient, and the proposed plane-aided
LiDAR-Inertial SLAM significantly improves the accuracy and
consistency compared to the other state-of-the-art algorithms
with only a small increase in time consumption.

I. INTRODUCTION

With the ability of real-time 3D reconstruction and self-
localization, LiDAR-based simultaneous localization and
mapping (SLAM) has been widely used in many indoor
robotic applications, such as autonomous navigation, con-
trol, and motion planning. However, due to the narrow
indoor space and repetitive structures, traditional LiDAR-
based SLAM suffers from significant cumulative errors.
On the other hand, planes ubiquitously exist in the indoor
environment, and how to quickly extract and apply them
reasonably in SLAM gains extensive attention recently.

Some works utilized locally fitted planes in scan regis-
tration, such as surfel-based methods [1, 2] and local plane
feature methods [3, 4], while explicitly existing planes in
the environment are ignored. Other works introduced explicit
planes, such as BALM [5] and π-LSAM [6]. However, the
plane extraction algorithms are computationally intensive
which limits their real-time applications.

To address this issue, we propose an efficient LiDAR ring-
based plane extraction algorithm and tightly couple explicit
planes in the odometry and mapping of LiDAR-Inertial
SLAM (LI-SLAM). The main contributions of this paper are
as follows:

• We propose a ring-based Point→Line→Plane extraction
algorithm, which extracts explicit planes in point cloud
efficiently and robustly.

This work is partially supported by the National Natural Science Foun-
dation of China under grant NSFC 62088101.

∗These two authors contribute equally to this work.
1The authors are with the Institute of Cyber-Systems and Control,

Zhejiang University, Hangzhou, China. (Yong Liu is the corresponding
author, email: yongliu@iipc.zju.edu.cn)

Trajectory Planes

Fig. 1: The hybrid map constructed by the proposed method on
units-dolly sequence of VECtor [7] dataset. We have removed some
ceiling planes for better visualization.

• We develop a LI-SLAM system with tightly coupled
explicit planes both in the odometry and mapping,
which improves the accuracy and consistency of the
system.

• The proposed method is validated on both the public
dataset (i.e., VECtor [7]) and the self-collected dataset.
Results show that our system achieves better perfor-
mance with little increase in time cost compared to the
other state-of-the-art LiDAR-Inertial SLAM algorithms.

II. RELATED WORKS

A. LiDAR-Inertial SLAM

LiDAR-Inertial SLAM is broadly divided into two cate-
gories: loosely coupled methods and tightly coupled meth-
ods. Loosely coupled methods rely on prior predictions,
using IMU data to remove the distortion of point cloud and
provide initial pose for point cloud registration. For example,
earlier methods like LOAM [3] and recent improvements like
LeGO-LOAM [8] are loosely coupled systems. However, the
accuracy of loosely coupled systems is low due to the lack
of using the raw data from two sensors.

In contrast, tightly coupled systems jointly process LiDAR
and IMU data, considering their internal relationship, which
can usually provide better accuracy and robustness. LIO-
mapping [9] adopts an optimization framework [10] to min-
imize the residual error of IMU and LiDAR measurements.
LIO-SAM [4] limits computational complexity by introduc-
ing LiDAR key-frames and using factor graph to optimize
IMU and LiDAR jointly. It is currently one of the most
popular open-source LI-SLAM frameworks. FAST-LIO [11]
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Fig. 2: System overview of our algorithm.

uses the Error-state Iterated Kalman Filter to couple IMU and
LiDAR measurements tightly. FAST-LIO2 [12] proposed an
incremental kd-tree to manage maps more efficiently.

B. LiDAR-based SLAM With Planes

In LiDAR-based SLAM algorithms, most algorithms use
point cloud maps composed of edge or plane features, such
as LOAM [3], LINS [13], LIO-SAM [4] and Lili-OM [14].
When registering a new scan, each point in the scan is
registered to a local fitted plane by iterated closet point
(ICP) [15] or its variants (e.g., generalized ICP [16]). The
recent work VoxelMap [17] manages local planes using
voxel maps and estimates plane parameters and confidences
simultaneously.

Other works try to explicitly extract planes in the envi-
ronment and add them to SLAM as landmarks. Kaess et
al. [18] propose a quaternion-based plane parameterization
method and improve the convergence speed by constructing
a relative plane model. Geneva et al. [19] utilize the closest
point (CP) to parameterize the plane, which outperforms the
plane parameterization method introduced in [18]. Liu et al.
derive the first and second order derivatives of the point-to-
plane cost function in BALM [5], enabling efficient iterative
optimization by the Levenberg-Marquardt algorithm [20].
Subsequently, Zhou et al. propose π-LSAM [6], which refers
to the concept of Bundle Adjustment (BA) in visual SLAM
and jointly optimizes key-frames and planes in the sliding
window using a Plane Adjustment (PA) method.

However, most of these works extract planes with
RANSAC [21], which is very slow. Moreover, the complex
plane utilization in the SLAM framework increases the
calculation, which brings significant challenges to the real-
time performance of the system.

III. SYSTEM OVERVIEW

The overview of our system is shown in Fig. 2. We
integrate IMU data to get the predicted pose for LiDAR
point cloud distortion and registration. For the input LiDAR
point cloud data, we extract local edge and plane features
(Feature Extraction in Fig. 2) [3] and register them with
the feature map (Scan Registration in Fig. 2) to obtain the
initial pose (LiDAR Odom in Fig. 2). Then we extract

explicit planes (Plane Extraction in Fig. 2, Sec IV) for
later use. We construct a factor graph consisting of IMU
pre-integration factors [22], LiDAR odometry factors, and
explicit plane factors within the sliding window (Sliding
Window Odometry in Fig. 2, Sec. V-C), and solve the
problem to obtain a more accurate odometry (Refined Odom
in Fig. 2). Finally, we perform a key-frame-based global
optimization with optimized odometry factors and global
plane factors for consistent mapping (Mapping in Fig. 2,
Sec. V-D).

IV. EFFICIENT PLANE EXTRACTION

In this section, we will introduce the proposed efficient
plane extraction method which groups points into lines fol-
lowed by lines into planes, i.e. Point→Line→Plane. Before
diving into details, we define the plane π = [n d] ∈ R4 and
line l = [n m] ∈ R6, where n ∈ R3 (∥n∥2 = 1) is the unit
direction vector of the plane or line, d ∈ R1 is the signed
distance from frame origin to the plane, and m ∈ R3 is the
midpoint of the line.

A. Ring-based Line Fitting

The basic idea of line fitting based on rings is similar to
the Region Growing [23]. Firstly, we classify the scan by ring
field and sort the points by increasing timestamps. Then we
randomly select a point in each ring as a seed and traverse
the points one by one in time forward and backward to fit
the line segment. If the distance dpl (Eq. 1) from one point
pi to the fitting line l = [n m] is less than the threshold ϵpl,
we group the point into the line and update the parameter of
the line. Otherwise, we select pi as a new seed to grow a
new line.

dpl =
∥(pi −m)× n∥

∥n∥
< ϵpl. (1)

Given a set of points of a line, we update the midpoint
of the line as the mean of all points and the direction as
the eigenvector corresponding to the largest eigenvalue of
the covariance matrix of all points. The eigen-decomposition
in direction update is the most time-consuming step in line
fitting. For more efficient calculation, we use an analytical
solution [24] specifically for the symmetric 3× 3 matrix to
accelerate eigenvalue decomposition.
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Fig. 3: (a) Line graph constructed with fitted lines. (b) Plane
extraction based on the line graph.

B. Line-based Plane Extraction

In order to further fit the plane based on fitted lines, we
construct a Line Graph as shown in Fig. 3(a). We denote all
line segments as Nodes and the spatial adjacent relationship
between line segments as Edges. Let li,j denotes the j-th
line segment detected in the i-th ring of a scan. There are
two types of edges in a line graph: (1) edges between lines
in the same ring, i.e. the edge between li,j and li,j+1; (2)
edges between lines in adjacent rings with overlap, i.e. the
edge between li,r1−1 and li+1,r2−1. The nodes connected
with edges are donated as Neighbor Nodes. We apply the
classic Breath-First Search (BFS) method to fit planes in
the line graph. As shown in Fig. 3(b), specific steps are as
follows:
(a) Start from the first node of the first ring and traverse

nodes of the entire line graph.
(b) Search all Neighbor Nodes of the root node, try to

initialize a plane given two nodes (lines).
(c) After the plane is initialized, traverse all of its Neighbor

Nodes. If the line is on the plane, add it to the plane
and update the plane parameters.

(d) After all nodes have been traversed, the algorithm ends.
We update the direction vector of a plane by fast eigen-

value decomposition on the covariance matrix of the points
proposed in Sec. IV-A. The eigenvector corresponding to the
smallest eigenvalue is the direction vector of the plane, and
the parameter d of the plane is the signed distance from the
frame origin to the midpoint of the plane.

Finally, we remove planes with small area and merge
planes with similar parameters.

V. PLANE-AIDED LIDAR-INERTIAL SLAM
In this section, we will introduce the proposed local plane-

aided sliding window odometry to improve the accuracy
of the odometry, and the global plane-aided mapping for
establishing a more consistent map. In the following, we
denote the world frame as W and the LiDAR frame as L.

md
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Fig. 4: The top view of the same map plane πm (solid red line)
and current observed plane πi, i ∈ {a, b} (solid green line).
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Fig. 5: The factor graph of sliding window optimization.

A. Plane Association

Given a plane πL =
[
nL dL

]T
in LiDAR frame L, we

can transform it to the world fram W by

πW =

[
nW

dW

]
=

[ W
L R 0(

M
L t

)T W
L R 1

] [
nL

dL

]
(2)

where W
L R and W

L t are the rotation and translation from
LiDAR frame to world frame respectively.

Suppose we have transferred planes of the new scan from
the LiDAR frame to the world frame through Eq. 2. Let
πi =

[
ni di

]T
be a plane of the new scan to be associated

and πm =
[
nm dm

]T
a plane in the map. We design a

plane-distance-insensitive metric as follows:

θi,m = arccos (nT
i nm) (3)

di,m = nT
mpi + dm (4)

where θi,m is the angle between the normal vector ni and
nm, and di,m is the distance from the center pi of plane πi

to the map plane πm. If θi,m < θthre and di,m < dthre, we
consider them to be the same plane. In practice, θthre is set as
15◦ and dthre as 0.2 m. Most works [25–27] use the distance
di,m = |di − dm| to measure the distance of two planes.
However, we found it is sensitive to the plane’s position. As
shown in Fig. 4, there is a small angle error between the
normal vector na and nm, resulting in the distance da,m
larger than db,m. In contrast, the distances from the center
point of πa and πb to plane πm are nearly identical, making
it a more suitable choice for plane associations.

B. Scan Registration

For a point scanned at time t ∈ [ti, tj), we linearly
interpolate the pose between ti and tj using IMU integration,
thus aligning all LiDAR points of the scan to the starting time
ti. For computational efficiency, we use the method proposed
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(a) (b)

Fig. 6: (a) Plane map management using spatial voxel hash of
planes. (b) Plane associations using hash indexing.
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Fig. 7: The factor graph of plane-aided mapping.

by LOAM [3] to extract local edge and plane features for
scan registration. To register a LiDAR scan at time ti, we
first select some nearest key-frames to construct a local map,
consisting of a local edge map and a local plane map. Then
we match edge features and plane features of the current
frame with the corresponding feature map. With point-to-
edge and point-to-plane residuals [28], we solve the problem
iteratively by the Levenberg-Marquardt algorithm [20] and
get the initial pose of this scan.

C. Plane-aided Odometry

In order to give a more accurate initial pose to mapping for
plane association, we further optimize the pose in a sliding
window with the aid of explicit planes. Since the planes
in the sliding window are spatially adjacent, we simply
use the method in Sec. V-A to associate the same planes.
The factor graph of the sliding window is shown in Fig. 5,
which consists of IMU pre-integration factors [22], LiDAR
odometry factors, explict plane observation factors, and prior
factors from marginalization. Here, we choose to include
LiDAR odometry factors rather than LiDAR local feature
factors in the sliding window optimization. It is a trade-off
between accuracy and real-time.

Given two planes πi and πm in the world frame, the plane
factor is defined as follows:

πi ⊖ πm =
[
ξ⊤Bp di − dm

]
∈ R3 (5)

The operation ⊖ represents the error between two planes,
where Bp ∈ R3×2 is a set of basis on tangent plane of ni,

and ξ ∈ R3 is defined as

ξ = −
arccos

(
nT
i nm

)
1−

(
nT
i nm

)2 (
nm −

(
nT
i nm

)
ni

)
∈ R3 (6)

We recommend readers to refer to [29] for more details.

D. Plane-aided Mapping

1) Hash-based Map Plane Indexing: To improve the
speed and robustness of plane associations between scan
and global plane map, we propose a 3D voxel-based plane
indexing method to detect if there are overlaps among planes.
Besides, we map the 3D voxel to 1D variables via a hash
function for fast indexing. As shown in Fig. 6(a), we first
sample the lines in the plane and get the point sets P. Then
for any point pi ∈ P, we calculate its voxel coordinates,

pi = [px, py, pz]
T
, v =

1

s
[[px] , [py] , [pz]]

T (7)

where v is the integer coordinate and s is the voxel size.
Given a voxel v = (vx, vy, vz), we can get the hash value
of it using the hash algorithm [30]:

hash(v) = (vxnx xor vyny xor vznz) mod N (8)

where nx, ny , nz are three large prime numbers, and N is
the size of the hash table. Finally, we maintain a hash table,
each element of which contains an array with plane ids that
intersect with this element’s corresponding voxel.

2) Global Map Plane Association: Given a plane πi of
current scan, we first calculate its voxel coordinates and hash
index. Then we query all plane ids with the same hash index
as πi in the hash table to get candidate planes in the map.
Finally, we use the plane association method in Sec. V-A to
determine which plane in the map is same as plane πi. As
shown in Fig. 6(b), plane B associates with plane A because
of not only the similar parameter, but also the geometric
overlap. Besides, we also propose two Double Check criteria
to improve the accuracy of plane associations:

• Ratio Test Check: The optimal associated plane error
should be less than 70% of the suboptimal.

• Association Consistency Check: The plane of current
scan finds the closest plane in the global plane map,
and that plane finds the closest plane in the current scan.
The results need to be consistent.

3) Map Plane Updating: To improve mapping consis-
tency, we merge planes of current scan into the plane map.
When the current plane finds an associated plane in the map,
we add its id to the corresponding hash table and merge it
into the plane map. Subsequently, we incrementally update
the 3D voxels and parameters of the global plane. Otherwise,
we add a new voxel to the plane map and append it to the
hash table.

4) Key-frame-based Global Optimization: We perform
global pose graph optimization based on key-frame poses and
associated global planes for consistent mapping. As shown
in Fig. 7, the global factor graph only contains optimized
odometry factors that come from the sliding window and
plane factors from the global plane associations. We use
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Fig. 8: (a) Our sensor suite for data collection. (b) The trajectories
generated from our algorithm on ZJU sequences aligned with
Google Earth.

TABLE I: The average plane extraction time cost (ms) of
different algorithms.

Dataset RANSAC Method [21] π-LSAM [6] Ours (Sec. IV)

ZJU-01 69.27 30.03 4.89
ZJU-02 75.53 26.89 5.41
ZJU-03 133.60 28.58 5.13
Average 92.8 28.50 5.14

iSAM2 [31] for factor graph optimization, which uses the
Bayesian tree to transform the factor graph, and only needs
to modify the variables related to current scan each time.

VI. EXPERIMENTS

In this section, we evaluate our method on both public and
self-collected datasets. All experiments are run on a computer
with an Intel Core i5-10400f CPU and 16GB RAM.

A. Dataset

1) VECtor [7] Dataset: We conduct quantitative experi-
ments on four indoor sequences of VECtor [7] dataset, which
equips with an Ouster OS0-128 LiDAR and an XSens MTi-
30 IMU. The school sequences are captured on a single floor
of a school building and the units sequences combine empty
rooms, cluttered rooms and a long straight hallway.

2) Self-collected Dataset: Our sensor suite for data col-
lection is shown in Fig. 8(a), which consists of a Velodyne
VLP-16 LiDAR at 10Hz, an Xsens Mti-300 IMU at 400Hz,
a USB camera for visualization and a tripod for ensuring
same poses at the starting and ending point.

We collected three representative sequences with the same
starting and ending poses, named ZJU-01, ZJU-02 and ZJU-
03. The trajectories of ZJU sequences are shown in Fig. 8.
ZJU-01 is a clean indoor environment. One side of the
corridor of ZJU-02 is windows so that LiDAR can scan
part of the outdoor scene. ZJU-03 is a combination of
indoor scenes and outdoor scenes, which is more challenging.
Besides, we also collected a Robust Test dataset of aggressive
motion for robustness evaluation.

B. Plane Extraction Evaluation

To the best of our knowledge, there are currently no open-
source plane extraction algorithms specifically for LiDAR
sensor. We reproduce the plane extraction method for LiDAR
of π-LSAM [6], which is adapted from the open-source

(a) Environment (b) RANSAC[21]

(c) π-LSAM [6] (d) Ours

Fig. 9: Visualization results of different plane extraction algorithms.
Point clouds of different colors represent different planes.

TABLE II: The translational RMSE (meters) on VECtor [7]
dataset.

Methods school school units units
dolly scooter dolly scooter

LIO-Mapping [9] 0.142 0.375 0.969 0.332
LIO-SAM [4] 0.125 0.186 0.142 0.192

FAST-LIO2 [12] 0.131 0.202 0.161 0.244
Ours 0.112 0.176 0.080 0.131

method plane detector [32] with the similar region growing
algorithm as ours. In addition, we also compare with plane
extraction using RANSAC [21].

1) Qualitative Evaluation: The results of different plane
extraction algorithms in a typical indoor environment are
shown in Fig. 9. It can be seen that the extracted planes
of our method are more complete and less mis-extracted.
Because the line extraction based on LiDAR rings effectively
filters out noise, while the Line Graph further consolidates
adjacent lines into planes, resulting in more complete planes.
π-LSAM [6] utilizes range image points for region growing,
but growth is halted when encountering noise, leading to the
segmentation of large planes. The planes obtained by the
RANSAC [21] method are complete, yet this approach is
time-consuming.

2) Efficiency Evaluation: We evaluate the efficiency, es-
pecially the average time consumption of different plane
extraction algorithms on ZJU sequences. Results are listed
in Table. I. The time cost of our method is 18.0% of π-
LSAM [6], and 5.5% of the RANSAC [21] method. It is
worth noting that the RANSAC [21] method needs more time
on ZJU-03 than other sequences. Because ZJU-03 combines
indoor and outdoor scenes, RANSAC [21] method needs
more random sampling to fit planes due to fewer planes
outdoors. While our method is based on region growing,
which will not be affected by scenes.

C. Plane-aided SLAM Evaluation

Since recent works of fusing explicit planes in LiDAR-
based SLAM [6, 19] are not open-sourced and have no ex-
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(a) school-dolly (b) school-scooter

(c) units-dolly (d) units-scooter

Fig. 10: Percentage of relative translation errors of different meth-
ods on four sequences of VECtor [7] dataset.

TABLE III: The start-to-end drift error on the ZJU se-
quences.

Dataset Error LIO LIO FAST OursMapping SAM LIO2

ZJU-01 Trans.(m) 1.851 3.376 3.751 0.039
Rot.(◦) 19.728 5.064 4.491 0.558

ZJU-02 Trans.(m) 4.148 3.376 6.297 0.267
Rot.(◦) 6.156 5.064 4.693 0.292

ZJU-03 Trans.(m) 3.979 7.342 4.434 0.007
Rot.(◦) 5.982 9.094 6.522 0.118

perimental results on public datasets, or do not support point
clouds with distortion [17], we compare the proposed method
with excellent open-source LI-SLAM algorithms, including
LIO-Mapping [9], LIO-SAM [4], and FAST-LIO2 [12]. For
all of these methods, we use their recommended parameters.
Note that, we disable the loop closure module of all the
methods for a fair comparison.

1) Results on VECtor [7] Dataset : The Absolute Po-
sition Error (APE) results are shown in Table II, in which
our method achieves the best absolute accuracy among all
sequences. The Relative Position Error (RPE) shown in
Fig. 10 also illustrate the superiority of our algorithm. The
trajectory and mapping results on the units-dolly sequence
are shown in Fig. 1. The results are expected since our
method benefits from explicit plane extractions and associ-
ations, while VECtor [7] dataset has rich planes. The plane
constraint is equivalent to a global constraint, which can
establish observations between planes of the current scan
and historical planes.

The observed enhancement in our method within the
school environment is not highly significant. This might
be attributed to the presence of noise in the form of wall
paintings, which affects our plane extraction algorithm. Fur-
thermore, the limited range of the indoor environment in this
sequence does not fully demonstrate the benefits of fusing
explicit planes.

TABLE IV: The average running time (ms) of the proposed
method.

Dataset Plane Detection Plane-aided Odometry Plane-aided Mapping
Sec. IV Sec. V-C Sec. V-D

ZJU-01 4.89 1.23 0.86
ZJU-02 5.41 1.22 0.87
ZJU-03 5.13 1.47 1.28
Average 5.14 1.31 1.00

2) Results on ZJU Sequences: Due to the unavailability
of ground truth of ZJU dataset, we maintain the poses
of the starting and ending points unchanged. Instead, we
evaluate the algorithm’s performance by measuring the pose
difference between the starting and ending points. The start-
to-end drift error of four algorithms is summarized in Table
III. Our method achieves the minimum error across all
sequences. Fig. 11 presents the mapping results and details,
focusing on two large-scale sequences, ZJU-02 and ZJU-03.

The ZJU sequences pose a challenge for LiDAR-based
SLAM due to their long corridors. In such corridors, LiDAR
has limited observations in certain directions (e.g., ceilings),
resulting in insufficient data to accurately estimate the robot’s
pose. In contrast, our algorithm addresses this limitation
by incorporating explicit planes, which effectively extend
observations from a few points to an infinite number of
points on the extracted planes. This augmentation provides
additional information for pose estimation. Furthermore, our
method employs a global plane association, which extends
the matching scope beyond traditional point cloud registra-
tion. These advantages significantly reduce the drift in our
SLAM system.

Notably, our method achieves a loop closure effect when
reaching the end of the trajectory, utilizing explicit plane
matching, resulting in nearly returning to the starting point.
On the other hand, other methods that solely rely on the
original point cloud struggle to achieve such loop closure
detection.

3) Robustness Evaluation with Aggressive Motion: In this
experiment, we assess the robustness of our system under
aggressive motion using the Robust Test sequence, where the
maximum angular velocity reaches 250 ◦/s (see Fig. 12). We
qualitatively evaluate the performance of our algorithm and
compare it with other methods using the mapping results,
which are presented in Fig. 13. During this evaluation,
FAST-LIO2 [12] fails to run on the Robust Test sequence.
This failure can be attributed to the fact that in narrow
indoor environments, relying solely on raw point clouds
leads to insufficient constraints, making the system more
susceptible to failure. In contrast, our method demonstrates
robust performance and achieves better results than other
methods under the same challenging conditions.

D. System Run Time Analysis

Since our algorithm is adapted from LIO-SAM [4], we
mainly focus on the additional time consumption of our
adaptations. The average single-frame running times of LIO-
SAM [4] on three ZJU sequences are 20.84ms, 18.98ms,
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Ours LIO-SAM

FAST-LIO2 LIO-Mapping

Ours LIO-SAM

FAST-LIO2 LIO-Mapping
(a) (b)

Fig. 11: (a) Mapping results on ZJU-02 dataset. (b) Mapping results on ZJU-03 dataset.

Time(s)

Fig. 12: The attitude, angular velocity, and acceleration of motion.
The movement is usually very aggressive and can be divided into
three different motion phases.

and 35.98ms, respectively. Table IV lists the average time
consumption of our adaptations on ZJU sequences. It can
be seen that our adaptations do not increase too much time
compared to the original LIO-SAM [4], which ensures the
real-time performance.

E. More Discussion

Although our method achieves better performance in
planar-rich environments, it suffers from generalizability
issues. We therefore only conduct experiments on indoor en-
vironment datasets containing rich planar features to demon-
strate the benefits of our method, but not on more general
datasets. In environments where planes are scarce, such
as outdoor environments, it may not benefit from explicit
planes. Under such circumstances, our method degenerates
to LIO-SAM [4], although it still works fine. In addition, our
plane extraction relies on the ring field, so it is only suitable
for mechanical LiDAR.

Ours(top view) LIO-SAM(top view)

LIO-Mapping(top view)

Ours(front view)

LIO-SAM(front view)

LIO-Mapping(front view)

Fig. 13: Mapping results of LIO-SAM [4], LIO-Mapping [9], and
our system on the Robust Test sequence with aggressive motions.

VII. CONCLUSION AND FEATURE WORK

In this paper, we propose a plane-aided LiDAR-Inertial
SLAM system, including an efficient Point→Line→Plane
extraction algorithm, an accurate odometry of tightly coupled
IMU, LiDAR, and explicit planes, and a global plane-
aided mapping for consistency. The efficient plane extraction
algorithm and key-frame-based factor graph optimization
enhance the real-time performance of our system. Extensive
experimental results demonstrate that our system can achieve
the best overall performance among the state-of-the-art coun-
terparts.

In the future, we will investigate methods to extract
explicit lines and incorporate them into SLAM to enhance
the accuracy and robustness of the system. In addition, the
deep-learning-based explicit line and plane extraction method
is also worth studying.
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