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Abstract—Variable speed limit (VSL) is an effective traffic
control method to alleviate congestion and increase safety. This
paper incorporates deep reinforcement learning (DRL) into the
VSL control strategy and proposes a twin delayed deep determin-
istic policy gradient (TD3)-based solution. We set different speed
limits between every lane to control the speed of vehicles entering
the highway merging area, thereby increasing the traffic flow and
improving passing efficiency. The proposed model learns a large
number of discrete actions within continuous actions through
the actor-critic framework, using the reward signal based on the
difference between inflow and outflow to train the agent. We
selected real-world road segments and collected corresponding
data to test the proposed method. The simulation results show
that the VSL control based on TD3 can effectively reduce average
travel time and increase the number of passing vehicles.

Keywords—Deep reinforcement learning, TD3, Variable speed
limit control, Intelligent transportation system

I. INTRODUCTION

Highways are essential parts of the transportation networks.
With the economy’s development, the transportation demand
continues to increase. Especially during holidays, highways
are often plagued with congestion problems. The merging area,
where traffic from various sections converges, is a common
cause of interruptions in the primary traffic flow, leading
to significant congestion. Once congestion occurs, passing
capacity drops sharply, further aggravating the situation [1].
To alleviate highway congestion, developing intelligent trans-
portation systems (ITS) is a practical and effective solution.

Variable speed limit (VSL), as a traffic control technology
of ITS, effectively mitigates congestion in merging areas,
enhancing traffic efficiency. VSL system dynamically detects
traffic flow parameters of vehicles on the road and inputs this
traffic flow information into the controller. After processing
through an algorithm, the system outputs the calculated speed
limit value to the variable message signs. VSL has been proven
to enhance traffic safety [2, 3] and reduce environmental
pollution [4] while simultaneously boosting traffic efficiency.

Traditional VSL strategies include determining the speed
limit value based on traffic state thresholds or feedback
control [5]. Recently, artificial intelligence has played a
more critical role in traffic flow control. Reinforcement
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learning (RL), a branch of machine learning, involving inter-
acting with the environment and receiving feedback, has been
widely applied. The emergence of deep learning significantly
improved RL, and deep reinforcement learning (DRL) has
achieved impressive success in areas like robotics and gaming.
There are many DRL methods, such as deep Q networks
(DQN) [6], Deep Deterministic Policy Gradient (DDPG) [7],
Proximal policy optimization (PPO) [8], twin delayed deep
deterministic policy gradient (TD3) [9], etc. DRL also holds
great potential for ITS control tasks. Experimental results
demonstrate that DRL methods outperform traditional model-
driven traffic control methods in traffic signal control, showing
their practical application value [10].

Many scholars have applied RL to VSL [11–14]. In [11],
Q-learning (QL) was applied to VSL and compared with the
feedback strategy. The study found that VSL based on QL
can significantly reduce travel time under different demands.
To represent and explore the large state-action space, the
study [12] applied DQN to VSL, and the results showed that
this method could improve the average travel speed. A VSL
algorithm based on DDPG was proposed in [13] to eliminate
chronic highway bottlenecks. In [14], multi-agent reinforce-
ment learning was applied to VSL. The proposed distributed
QL-VSL method can improve traffic flow by maintaining high
traffic density levels close to critical density on highways. This
paper applies the TD3 algorithm to VSL and proposes a lane-
based VSL algorithm for highway merging areas. Considering
that the discrete action space of lane-based control is too large,
we use continuous action output and map it to a discrete action
space. This algorithm can set corresponding speed limits for
both mainline and ramp according to real-time traffic states
upstream and downstream.

The organization of this paper is as follows. Section II
describes the mechanism of VSL. Section III introduces the
TD3 algorithm and its application in VSL. Section IV presents
the selected traffic scenarios and traffic demands. Section V
analyzes the simulation results. Finally, the main conclusions
are drawn in the last section.
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II. VARIABLE SPEED LIMIT CONTROL

When traffic demand exceeds the capacity of the merging
area, congestion occurs, accompanied by a sharp decrease
in capacity and stop-and-go traffic. Previous studies have
investigated traffic flow at bottleneck locations and found that a
sharp decrease in capacity is a common phenomenon [15]. As
vehicle density increases and road capacity gradually reaches
its maximum, further increases in vehicle density will cause
road capacity to drop sharply within a short period. As shown
in Fig. 1, when vehicle density exceeds Km, the capacity drops
from Qm to Qd.

Fig. 1. Traffic flow relationships with a sharp drop in capacity

Related research shows that VSL can effectively alleviate
congestion in bottleneck areas [16]. VSL on bottleneck sec-
tions cannot directly improve the theoretical capacity of the
section, but it can influence traffic flow density and speed on
the bottleneck section by controlling the speed of upstream
vehicles in a timely manner, preventing a sharp drop in road
capacity, achieving a traffic load level equal to or close to
the maximum traffic capacity of the bottleneck area, and
improving road efficiency and actual traffic flow volume.

Fig. 2 simplifies the impact process of VSL on traffic
flow in the bottleneck area. The black line represents the
actual traffic flow basic map of the bottleneck area, while
the green line represents the basic map after applying VSL.
Initially, vehicles travel at free-flow speeds. As the number of
vehicles gradually increases and traffic density increases, the
capacity drops sharply to Qd after reaching the threshold Km

of capacity reduction. At this time, the maximum passing flow
of the bottleneck section is Qd. By applying VSL upstream,
with a speed limit value of VV SL, the maximum passing flow
of the upstream section can be increased to QV SL. Through
VSL, a high-density artificial traffic flow area can be formed
on the upstream side of the bottleneck section, increasing
the traffic capacity from Qd to QV SL and avoiding queues
of the bottleneck area that may result in congestion on the
upstream section. At the same time, it can quickly relieve
queuing vehicles to restore the original traffic capacity, thereby
avoiding a decrease in traffic capacity at bottleneck areas.

Fig. 2. Impact of VSL on bottleneck areas

III. TD3 FOR VSL

A. Reinforcement Learning

The agent selects actions based on the state of the en-
vironment, and the actions affect the environment, which
provides feedback in the form of rewards. By iterating the
policy function in this way, the agent is guided to choose
more appropriate actions in the future, and the basic model
framework for reinforcement learning is the Markov decision
process (MDP).

The simplest MDP consists of four elements {S,A, P, r},
where S represents the state of the environment, A represents
the actions of the agent, r represents the reward function and
p represents the probability of state transitions. At each time
step t, the agent selects an action based on the current state s
and policy π. The environment then transitions to state St−1

with probability P and provides a reward r : S×A×S → R.
The policy π is a mapping from states to actions, and its per-
formance can be evaluated by the state-value function V (s) or
Q-value function Q(s, a). The ultimate goal of reinforcement
learning is to find a policy π(a | s) = Pr (At = a | St−1 = s)
that maximizes the expected cumulative reward Gt for the
agent.

Gt =
∞∑
t=i

γt−ir (st, at) (1)

Where γ is the discount factor, which measures the magnitude
of future rewards in the cumulative rewards at the current state.
a is the action, s is the state, t is the time, and r (st, at) is
the reward at each time step.

To find the optimal policy function π∗, many reinforcement
learning algorithms use the Q-value function Qπ (st, at) to
evaluate the policy. The Bellman equation is given by

Qπ (st, at) = r (st, at) + γEπ [Qπ (st+1, at+1)] (2)

where Eπ is the expectation.
When the optimal Q-value function Q∗π (st, at) is

known, the policy function π∗ can be obtained by a =
argmaxQ∗

π (st, a
′). The value of Q∗π (st, at) can be learned
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using a temporal difference in the QL algorithm. However,
when the dimensions of states and actions are large, the QL
algorithm faces a “dimensional disaster.” This problem can be
solved by using neural networks.

B. TD3 Algorithm

The twin delayed deep deterministic policy gradient (TD3)
algorithm is a DRL algorithm based on the actor-critic (AC)
framework, an improved version of the DDPG algorithm.
The algorithm uses two neural networks called the actor and
critic networks to approximate the policy function and Q
value function. The actor-network is responsible for interacting
with the environment to obtain the most suitable action a for
the current state s. The critic network evaluates the policy
network’s action a and the system’s current state s based on
the reward r. The TD3 algorithm can handle problems with
continuous action spaces. Due to the potential overestimation
of the Q-value function by the critic network in the DDPG
algorithm, TD3 makes three improvements to address the
shortcomings of DDPG.

• The TD3 algorithm draws on the experience of the
DDQN [17] algorithm by using two sets of critic net-
works and considering smaller target Q values in the
computation, which helps to suppress the overestimation
problem in neural networks.
Updating the Critic network with minimized loss func-
tion.

L(θ) = E

[
2∑

i=1

(yt −Qθi (st, at))
2

]
(3)

Where Qθi (st, at) is the output of the critical network,
yt is the target Q value, which is defined as

yt = r (st, at) + γminQθ′
i
(st+1, at+1) (4)

at+1 ∼ πϕ′ (st+1) (5)

Where Qθ′ is the output of the two critical target net-
works, the smaller Q value is selected to calculate the
target Q value, and πϕ′ is the target actor policy.
Updating actor networks by deterministic policy gradient
algorithm.

∇ϕJ(ϕ) = Es∼pπ

[
∇aQθ(s, a)|a=π(s) ∇ϕπϕ(s)

]
(6)

• The TD3 algorithm, like DDPG, uses a soft update
strategy to update the target network. However, TD3
updates the policy network at a lower frequency than
the critic network. This delayed policy update can reduce
accumulated errors, thus reducing variance. Additionally,
reducing errors in the target network prior to updating
the actor-network enhances the stability of the TD3
algorithm.

• In order to further reduce the impact of Q-value function
errors on updating target values, the TD3 algorithm
introduces noise into the target actor-network, which

makes the Q-value function smoother and enhances the
robustness of the algorithm.

a′ = πϕ′ (s′) + ε, ε ∼ clip(N (0, σ),−c, c) (7)

Where a′ is the next action, s′ is the next state, ε is noise,
N is a normal distribution, σ is the standard deviation,
and c is the range of noise.

The TD3 algorithm employs experience replay to train the
actor and critic networks. An experience replay buffer is used
to store the < s, a, r, s′ > samples that are made up of state
s, action a, reward value r, next state s′. These samples are
obtained by interacting with the environment. During training,
the neural networks are updated using small, random batches
of samples taken from the replay buffer. Using experience
replay improves the sample efficiency, and the correlation
between training samples is reduced, leading to more stable
convergence.

In summary, the TD3 algorithm comes with the benefit of
reducing the overestimation of the Q-value, and improving
training efficiency and stability.

C. Architectures of Neural Networks

This paper uses general Deep Neural Networks (DNNs) for
the policy and value networks. The established policy network
and the value network of TD3 both include 5 MLP layers as
the input layer, hidden layers and the output layer. The specific
architectures of the neural networks are shown in Fig. 3. The
numbers in the figures represent the sizes of each input or
output.

D. TD3-Based VSL Strategy

The key elements in the TD3 agent include:
• Agent: The agent in this article is a VSL controller,

which reduces the average travel time and improves traffic
efficiency by setting corresponding speed limits for each
lane.

• State: The state describes the real-time traffic environ-
ment, and the state variables can be any traffic parameters
obtained by sensors. In this study, we set up corre-
sponding detectors on the upstream mainline, upstream
ramp, and bottleneck area. We defined three variables to
define the road segment traffic state, corresponding to
the vehicle occupancy rate data collected by detectors at
these three locations. These three variables can be used
to monitor changes in traffic conditions.

• Action: The action taken by the agent at a time step
t, which is the speed limit value set by the agent for
each lane in the control area, is discretized into multiples
of 5 in the published speed limit value in practical
applications. Considering that when there are many lanes,
the discrete action space will become very large, and the
algorithm for handling discrete action spaces such as QL
and DQN will be very difficult. Therefore, we adopt a
method based on continuous space actions and map the
continuous action space into a discrete action space by
evenly dividing it.
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Fig. 3. Actor and critic network structure

• State transition probability: The training of the agent
is conducted through simulation on the SUMO
platform [18], where the state transition probability is
represented by the changes in micro traffic flow presented
by the SUMO platform at each time step. These state
changes can be manifested explicitly as variations in the
values of different detectors.

• Reward: The main goal is to improve traffic efficiency
through VSL. An essential indicator of traffic efficiency
is the average travel time. However, since the travel
time cannot be calculated until the vehicle completes
its route, using average travel time as a reward function
can lead to a delay in reward. To solve this problem,
refer to [19], where it is shown that there is a direct
relationship between the average travel time and the
number of arriving vehicles f in at the entrance of a road
segment and the number of departing vehicles f out at the
exit of a road segment, that is:

TTS = T
K∑

k=1

[
N(0) + T

k−1∑
t=0

f in(t)− T
k−1∑
t=0

f out(t)

]

= T

K∑
k=1

N(0) + T 2
K∑

k=1

k−1∑
t=0

(f in(t)− f out(t)) (8)

where K represents the total number of time steps,
T represents the time interval, and k represents the
time index. f in(t) and f out(t) respectively represent the
number of vehicles arriving at the entrance of a road
segment and leaving at the exit at time t. Therefore, the
reward function within a time step t can be represented
by f in(t)− f out(t), the overall reward function can be
represented by F in − F out. The number of vehicles de-
parting and arriving at a certain moment can be collected
respectively from upstream and downstream detectors.

In Fig. 4, we present the overall control framework of VSL.
The actor network outputs the speed limit values for each
lane based on the traffic state. The detector provides feedback
on the difference between inflow and outflow as a reward
signal, samples are stored in the replay buffer and mini-batch
is sampled to train the neural networks.

IV. SIMULATION NETWORK

We selected a road segment of about 2.5 kilometers long
on the Hangzhou-Ningbo Expressway in Zhejiang Province,
China. The geometric shape of this section in the map and
SUMO is shown in Fig. 5. This section has four lanes, and
there is a bottleneck on upstream of the highway due to the
merging of traffic flows from the mainline and the ramp.
The maximum and minimum speed limits for the right two
lanes on the mainline are 100km/h and 60km/h, respectively,
while those for the left two lanes are 120km/h and 60km/h,
respectively. The speed limit for the ramp is 40km/h.
According to the setting principles of discrete actions de-
scribed in Section III, the action set for the right two lanes
on the mainline is {60, 65, 70, 75, 80, 85, 90, 95, 100}(km/h),
while that for the left two lanes is {60, 65, 70, 75, 80, 85, 90,
95, 100, 105, 110, 115, 120}(km/h). The action set for ramps
is {5, 10, 15, 20, 25, 30, 35, 40}(km/h).

We set up four detectors at the upstream mainline entrance,
upstream ramp entrance, bottleneck area and downstream exit
to detect traffic occupancy rates. There are two vehicle travel
routes on the section: Mainline to Mainline (M2M) and On-
ramp to Mainline (On2M). In order to test the control effect
under high traffic volume, Shown in Table I, we collected the
passing vehicle volume data on point A of the M2M from
10 am to 4 pm on January 27th (the last day of the Spring
Festival holiday). And the passing vehicle volume data of the
On2M were simulated. The simulation lasts for 6 hours. The
VSL control zone length for the mainline is set to 500m, and
that for ramps is set to 300m. The control period is set to 5
minutes. The number of training episodes is 200, and the traffic
volume in each period followed a Poisson distribution. Trucks
are set to drive on the right side by default. Considering that
frequent acceleration/deceleration and large speed differences
between adjacent lanes can increase accident rates [20], we
set a limit that the speed difference between adjacent time
steps in the same lane should not exceed 20km/h, and that
between adjacent lanes in the same time-step should not
exceed 20km/h.

V. SIMULATION RESULT

The reward value obtained by the agent in each round can
reflect the quality of the training results. The higher the reward
value, the better the training effect. We trained a total of 200
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Fig. 4. TD3-based algorithm framework for VSL

Fig. 5. Road section directional diagram in map and SUMO

TABLE I. TRAFFIC DEMAND FOR TWO ROUTES

Time M2M On2M

10:00-11:00 4933 300
11:00-12:00 6108 800
12:00-13:00 6356 1000
13:00-14:00 6692 1100
14:00-15:00 6054 1000
15:00-16:00 5246 800

episodes, and the change in reward value during the learning
process is shown in Fig. 6. It can be seen that there is a clear
convergence trend in the reward value, which roughly shows
an upward trend in the first 100 episodes, and then gradually
stabilizes.

The speed limit values for each lane vary over time, as
shown in Fig. 7. In most cases, the speed limit values are lower
than those without control ({100, 100, 120, 120, 40}(km/h)).
Due to the larger number of vehicles during the middle time
period compared to the two sides, the speed limit value
in the middle position is slightly lower than that on both
sides. Among the four lanes on the mainline, Lane 1 has
a lower speed limit value than the other three lanes. One
important reason is that when vehicles on the ramp merge
onto the mainline, the lane-changing behavior initially affects
the rightmost lane of the mainline, leading to a lower speed
limit on the rightmost lane compared to the speed limits of
other lanes on the mainline.

In this study, we conducted a baseline simulation under
the condition without control (the speed limit values for all
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Fig. 6. Reward variation with learning process

Fig. 7. Speed limit variation on five Lanes with simulation time

five lanes were constant at {100, 100, 120, 120, 40}(km/h)).
We collected the average travel speeds (ATS) at each time
step under two scenarios: with and without VSL. As shown
in Fig. 8, it can be seen that when the traffic volume is
low at the beginning and has not reached the critical density
Km, the ATS under both scenarios is roughly similar. As the
number of vehicles increases to the critical density Km, traffic
congestions occur without control, leading to a significant
decrease in ATS. However, when adopting VSL control, the
ATS can still be maintained at a certain level, avoiding the
sharp decrease in traffic capacity described in Section II.

Table II shows the ATS per hour on the road section with
and without VSL. It can be seen that during the period of
13:00-14:00, when there is a relatively high traffic flow, the
effect of ATS is the best, reaching 34.7%. In the first hour,
due to low traffic volume, the ATS with and without VSL
are similar, and VSL does not help much in improving traffic
efficiency. The ATS during the entire simulation period is
increased by 12.3%. Combining Table II and Fig. 8, it can be
concluded that when the traffic volume continues to increase to
reach the critical density Km, using VSL can improve traffic
efficiency to a certain extent. However, when traffic volume is
low, VSL does not help much in improving traffic efficiency.

Fig. 8. Variation of ATS with simulation time

TABLE II. PERFORMANCE OF ATS PER HOUR WITH AND WITH-
OUT VSL

Time
ATS with

VSL(m/s)
ATS without
VSL(m/s) Improvement

10:00-11:00 24.7 24.6 0.5%
11:00-12:00 21.3 20.5 3.9%
12:00-13:00 19.5 16.9 15.2%
13:00-14:00 18.8 13.9 34.7%
14:00-15:00 19.1 15.6 22.2%
15:00-16:00 21.7 20.0 8.4%

10:00-16:00 20.9 18.6 12.3%

VI. CONCLUSION

This paper proposes a VSL method based on TD3 to reduce
traffic congestion in highway merging areas. The designed
controller can adjust the speed limits of the mainline and
ramp to keep the flow in the bottleneck area close to its
capacity. We selected a road segment of the Hangzhou-Ningbo
Expressway in Zhejiang Province, China, collected traffic flow
data during the Spring Festival holiday, conducted simulations
on the SUMO platform, and set a series of conditions to make
the simulation as close as possible to real traffic conditions.

The simulation results show that our proposed method is
effective in high-traffic volume situations. Using ATS as the
indicator, using VSL improves traffic efficiency by 12.3%
compared to not using it. At the same time, VSL shows differ-
ent effects under different traffic volumes and can significantly
improve the traffic parameters of highways when the traffic
volume is high. Therefore, VSL can be used reasonably to
improve traffic efficiency during peak travel periods such as
holidays.

The limitation of this study is that we assumed all vehicles
fully comply with the posted speed limits, which may be
challenging to achieve in real-world scenarios. Moreover,
further investigation of VSL’s performance under different
traffic volumes would be beneficial to determine the conditions
for activating VSL. In future work, the proposed controller will
be deployed and tested in real-world scenarios.

In summary, our proposed method has broad application
prospects and practical significance in the field of intelligent
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transportation systems. This approach can provide technical
support for intelligent traffic management and improve peo-
ple’s travel experiences.
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