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Active Planning of Robot Navigation for 3D Scene Exploration

Wenzhou Chen', Yong Liu'

Abstract— This work addresses the active planning of robot
navigation tasks for 3D scene exploration. 3D scene exploration
is an old and difficult task in robotics. In this paper, we present
a strategy to guide a mobile autonomous robot equipped with
a camera in order to autonomously explore the unknown 3D
scene. By merging the particle filter into 3D scene exploration,
we address the robot navigation problem in a heuristic way,
and generate a sequence of camera poses to coverage the
unknown 3D scene. First, we randomly generate a bunch of
potential camera pose vectors. Then, we select the vectors
through our criteria. After determining the first camera pose
vector, we generate the next group of vectors based on the
former one. We select the new camera pose vector and
thereafter. We verify the algorithm theoretically and show the
good performance in the simulation environment.

I. INTRODUCTION

The research of mobile robot navigation has recently been
developed as a focus within the mobile robotics community.
3D scene exploration is important in many practical appli-
cations, such as surveillance [1], prospection [2] and active
vision [3].

Most navigation algorithms address the 3D scene ex-
ploration problem by simultaneous localization and map-
ping(SLAM) [4]-[6]. This kind of method can get the scene
map and the robot pose through the vision or lidar sensor
data. One of the famous SLAM algotithm is ORB-SLAM
[4] which address the localiztion and mapping task based
on the feature points and optimization method. There is no
doubt that the SLAM algorithm performs well in mapping
the unknown 3D scene. But that is’t an efficient way. The
sparse feature based SLAM algorithm [4], [6] mainly focus
on getting accurate pose of robots on the 3D scene and
their map is also sparse. The algorithms [5] which build
dense map for 3D scene always accompanied with the high
computational cost, while it is not necessary in the 3D scene
exploration problem.

In this paper, we consider the task of guiding a mobile
autonomous robot carrying a vision sensor, in order to
efficently explore the unknown 3D scene. We present a
exploration algorithm to generate the camera poses which
would optimal covered the exploration environment. The
basic idea of our strategy is quite familiar with the view
planning problem(VPP) [7]-[9], both of the task want to
get the optimal view point to cover the target object or
environment. The view planning algorithm is well studied
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and the paper [9] address the VPP with reinforcement
learning also get good results.

However, the view planning problems always assume the
3-D CAD model is available before view planning. On the
contrary, that is impossible in scene exploration tasks. We
can only get a weak prior of unknown environment by the
robot observation.Inspired by the color-based particle filter
[10] in tracking task, we present a heuristic algorithm based
on the particle filter frame and the coverage criteria. We
use the prior information to initial our strategy and start the
heuristic algorithm to get the local optimal navigation pose
sequence one by one.

The remainder of this paper is organized as follows. In
Section II, we introduce the necessary preliminary back-
ground and define the basic notation. The visual coverage
criterias and constrains are given in the Section III. The
overall framework of the navigation strategy is described in
Section I'V. Simulation results and the strategy performance
are presented in Section V and the paper is concluded in
Section VI.

II. PROBLEM FORMULATION AND BASIC NOTATIONS

The problem we considered in this paper is the robot nav-
igation strategy for 3D scene exploration, which is usually
encoutered in practical tasks. For the specified problem, it
is assumed that the robot don’t know the exact model of the
environment. The robot need to explore the environment by
using the sensor observation. Here we use a RGB-D camera
as the only sensor on our robot.

A. Camera Model

We assume the mobile robot explore the unknown en-
vironment with a fixed RGB-D camera. And the mobile
robot explore the environment in a plane and the camera is
fixed with the mobile robot without relative movement. We
simply regared our RGB-D camera as the combination of a
pinhole camera model and a depth sensor model. Generally,
practical camera models are always highly nonlinear, and
the pinhole camera model which we adopted may lead
some modeling errors. However, We mainly focus on the
exploration strategy and the coverage performance in this
work, the pinhole camera model is more efficient and
convenient in our tasks.

We use f € R to express the focal length(mm), and o =
(ug,vo) represents the principle point in pixels. In addition,
we denote the image size w X h(pixel x pixel) to represent
the width and height of the image in pixel where w € Z™
and h € ZT.
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B. Coordinate System Description

The object we consider here is a mobile robot equipped
with a fixed RGB-D camera. As shown in Fig. 1, the x.- and
y-axis belongs to the camera coordinate system C. We build
the robot coordinate system at the origin of the orthogonal
coordinate system C and let them coincide with another. We
use the camera coordinate system C to represent the robot
coordinate system for the camera is fixed with the robot. The
T,,-axis and y,,-axis represent the world coordinate system.
The z,-axis of world coordinate system is paralleled with
the z.-axis, and the z.-axis of C is perpendicular to the
plane of motion. Thus, the constant translation value of
camera in z,-axis can be ignored when we focus on the
robot exploration task. We can simplify our robot navigation
problem from 3D scene to the 2D plane and define the
motion constrain to accomplish the simplification.

Zwh

Xw

Fig. 1. Coordinate relationship between the mobile robot with fixed camera
and the 3D scene.

C. Camera Field of View

As shown in Fig. 2 , the camera has a field of view with
rectangular pyramid shape. In our 3D scene exploration task,
we need to ensure that our exploration strategy could get
the valuable robot navigation poses with the high quality
images of the unknown 3D scene. Because it lays a good
foundation for later extensions, such as 3D scene recon-
struction [11]-[13]. So we define the length value d as the
valid performance distance for the camera has a fixed focal
length. We assume the camera performs well near a small
range of that distance value.

III. COVERAGE CRITERIA AND OVERALL SCHEME

Based on the aforementioned motion constrain, we re-
formulate our task in the 2D plane. We use pose vector
P = [x,y,0] to represent the pose of the camera fixed in
the mobile robot by default in the rest parts of our paper.
The (z,y) term determine the position of the vector and the
0 determine the rotation of the pose vectors. In this section,
we formulate the coverage criteria and introduce it in details.
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Fig. 2. Field of view and the relative parameters.

A. Depth Error and FOV Constrain

The rectangular pyramid shape camera field of view
degrade to an triangular in the 2D plane because of the
motion constrain.As shown in the Fig.3, the valuable range
of our camera model is defined as [d + 0,d — §] for
convenience. The ¢ value is a parameter that determined by
the real camera when we use in practice. We get the depth
image for each camera pose from the RGB-D camera, and
preprocess the depth image through a bialteral filter [14].
It is assumed that the gray level on depth image is linear
correlated with depth value in the 3D scene. So we can get
an depth value range [D + A, D — A] correspond with the
distance range [d + d,d — ¢]. By summing up each column
of the depth image, the distance between camera and the
unknown environment is defined as the FOV constrain. To
make use of the depth image, we define the depth image
as I and formulate the Des(z) as the depth image array in
horizontal. The error function evaluate the relative rotation
between the camera and the environment.
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Fig. 3. Field of view and the relative parameters.
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B. Overall Scheme

With the aforementioned constrains and models in mind,
we describe the overall scheme for the proposed robot
exploration strategy in this section.

The question that mainly concerned in this work is
exploring the unknown environment efficiently. Inspired by
the visual coverage problem solutions [7], [15], [16], we
transfer our exploration problem into a 3D scene coverage
problem. In order to generate the essential camera poses
which can cover the 3D scene in a effective way, we use
these poses to guide the robot explore in the 3D scene.
Now our exploration problem could be written as following
optimization problem:

min n 3)

sit. Area = f(p1,p2)U f(p2,p3)U...U f(Pn—1,Pn) (4

The function f(p;,pit1), (¢ = 1,2,...,n) represent the
coverage area summation for each adjacent pose. The Area
is the area of the whole 3D scene, and the n represent the
total number of camera poses.

We could explain the optimization formulation more
clearly. The purpose of our task is getting the minimal
number of camera poses when the camera field of views
can cover the unknown 3D scene with a proper pose. It
is hard to compute the minimal number directly without
any conditions and constrains. We rewrite our optimization
problem to a much more solvable expression.

Z \/ — Tnp— 1 + (yn - ynfl)2 (5)
f(pnflapn) Z g (6)
Area = f(p1,p2) U f(p2,p3) U ... U f(Pn—1,Pn)

The o is defined as a area threshold to represent the
mimimal overlap area between two adjacent poses. Because
we need the overlap area to address the subsequent tasks
such as sparse mapping.

IV. PARTICLE-BASED POSE DETERMINATION

On the basis of the previous assumption and definition,
we combine the robot navigation problem with the visual
coverage scheme proposed in [15] to build a heuristic
navigation strategy by using the particle-based pose deter-
mination algorithm.

Our paper present an algorithm to determine the optimal
poses in a heuristic way. As shown in Fig.4, we use
aforementioned coverage criterion and build our algorithm
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based on the particle filter frame [10]. The X value represent
the pose vector sets of P in our algorithm. We initial the
position value by two-dimentional Gaussian distribution in
the 2-D plane. And the rotation value 6 is initiated by the
uniform distribution in the range of [0, 27].

By following the particle-based pose determination al-
gorithm, we can determing one optimal coverage pose
according to the depth error and the field of view constrain.
That pose is the seed of our strategy. We generate the next
group of pose vectors beside the first pose vector. The mean
location value of the next pose vector group is in the line
which is parallel to the first local optimal pose vector. The
(z,y) of the new poses is Gaussian distributed. And the
6 term is Guassian distributed in the range of [0, 27| with
their mean coordinated with the 6 term of last local optimal
pose. The distance value between the mean (z,y) term
of the new poses and the old optimal pose (z,y) term is
d x tan (). By recurrently running our particle-based pose
determlnatlon algorithm, we can get the optimal poses one
after one. However, it is only the local optimal pose for our
exploration. To get the global pose value, we can simply
change the distance term to a sequence of parameters and
solve it through equation 5 and 6.

Fig. 4. Coverage iteration.

Algorithm 1 Particle-Based Single Pose Determination

1: Random initial the NV pose vectors X by the prior Env
and the first observation Z, initial the probability weight
7" for X" € {0,1,2,...,n}

2:t+0

3: FOV _flag + 1

4: while FOV _flag do

5: X = Resample(Xy, m;)

6: = WeightUpdate(m;, Xy, I)
7: FOV _flag = Evaluate(X;, m¢)
8: t—t+1

9: end while

10: return P

—
—_

function RESAMPLE(X}, m¢)
Compute the CDF of the weight and resample it. (a)

»

1) calculate the normalized cumulative probabilities
Ct
(0) -0
(71 Ci(gn_l) +7T§n)
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C = c_g%)
2) Generate a uniformly distributed random number
r e 0,1]
3) Use binary search to find the smallest j, we get a
N-d array j for which ¢/ > r[i]
4) Update the particle set, Xi = X7
13: end function
14: function WEIGHTUPDATE(7;, Xy, I;)
15: Update the weight by the scorefun and normalize
the weight.
wy = ScoreFun(Xy, m, Iy)
ﬂ_gz) _ ﬂ_t(z)wgz)
N
)= $5

i=1
o

T = —m
ur
16: return 7,

17: end function
18: function SCOREFUN(Xy, 7y, I})
19: Init N-d array error and wy
. 1 — (4)
20:  errorfi| = error(I;”’)
. (4)
2L wﬁl) = 87‘:‘:07‘[1‘]
N
22: w,gN) => wt(l)
1

i=
w®

23: wy = —(NL)
Wy
24: return wy

25: end function
26: function EVALUATE(X}, )

27. Select the i in maz(r")

28: if (D —A) < Des(¥) < (D+A))

29: and (Jerror(I)| < 2A) then P = X"
30: return 0

31: else

32: return 1

33: end if

34: end function

V. SIMULATION AND EXPERIMENTAL RESULTS

As shown in the Fig.6, we build the simulation 3D
scene in the blender software environment. The scene is
a room with some furneture in it. The purple wall is
the given 3D scene which need to be covered by our
camera FOVs. The camera pose shown in this figure is
the first local optimal pose of our iteration algorithm. By
following our particle-based pose determination algorithm,
new pose vector sets would be generated and selected with
our coverage constrains. And we can generate the camera
pose one after one. Fig.5 illustrate the performance of our
scheme in blender environment for the outstanding coverage
rendering. The FOV of each local optimal camera pose is
rendered into rectangular pyramid. The overlap areas of
FOVs are rendered into the light color. And the darker area
are the FOVs of particular camera poses. The picture clearly
shows a sequence of pose iteration results as an example.

978-1-5386-1854-7/18/$31.00 ©2018 IEEE

Fig. 5. Coverage strategy illustration.

®

Fig. 6. 3D scene illustration.

To verify the convergence property of our particle-based
pose determination algorithm, we build our algorithm in the
simulation environment. By generating the specific 3D scene
and randomly initial our program, our pose determination
algorithm can converge in a good result with the given scene
well covered.

VI. CONCLUSION

A novelty robot navigation strategy in an unknown 3D
scene is presented in this paper. An exploration approach
for covering the unknown environment is implemented by
heuristically iterating the particle-based pose determination
algorithm. Potential robot poses are generated one after one,
with the global optimal coverage problem being novelly
degraded as a sequence of more solvable local optimization
tasks. As a result, the poses for covering the unknown
environment are obtained. We could regard these poses as
the key frame and control the robot to efficientlly explore
the unknown 3D scene by arriving at the poses.

519

Authorized licensed use limited to: Zhejiang University. Downloaded on February 25,2021 at 03:34:29 UTC from IEEE Xplore. Restrictions apply.



(1]

[2

—

3

—

(4]

[5]

[6

[t}

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

M. Masdr, “A biologically inspired swarm robot coordination al-
gorithm for exploration and surveillance,” in Intelligent Engineer-
ing Systems (INES), 2013 IEEE 17th International Conference on,
pp. 271-275, 1EEE, 2013.

G. Ferri, M. V. Jakuba, and D. R. Yoerger, “A novel trigger-based
method for hydrothermal vents prospecting using an autonomous
underwater robot,” Autonomous Robots, vol. 29, no. 1, pp. 67-83,
2010.

S. Chen, Y. Li, and N. M. Kwok, “Active vision in robotic systems:
A survey of recent developments,” International Journal of Robotics
Research, vol. 30, no. 11, pp. 1343-1377, 2011.

R. Mur-Artal and J. D. Tardés, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017.

T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and
A. Davison, “Elasticfusion: Dense slam without a pose graph,”
Robotics: Science and Systems, 2015.

C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct
monocular visual odometry,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on, pp. 15-22, IEEE, 2014.
W. R. Scott, G. Roth, and J.-F. Rivest, “View planning for automated
three-dimensional object reconstruction and inspection,” ACM Com-
puting Surveys (CSUR), vol. 35, no. 1, pp. 64-96, 2003.

F.-M. De Rainville, J.-P. Mercier, C. Gagné, P. Giguere, and D. Lau-
rendeau, “Multisensor placement in 3d environments via visibility
estimation and derivative-free optimization,” in Robotics and Automa-
tion (ICRA), 2015 IEEE International Conference on, pp. 3327-3334,
IEEE, 2015.

M. D. Kaba, M. G. Uzunbas, and S. N. Lim, “A reinforcement
learning approach to the view planning problem,” in Conf. Comput.
Vis. Pattern Recognit, pp. 5094-5102, 2017.

K. Nummiaro, E. Koller-Meier, and L. Van Gool, “An adaptive color-
based particle filter,” Image and vision computing, vol. 21, no. 1,
pp. 99-110, 2003.

X. Liu, Y. Zhao, and S.-C. Zhu, “Single-view 3d scene reconstruction
and parsing by attribute grammar,” IEEE transactions on pattern
analysis and machine intelligence, vol. 40, no. 3, pp. 710-725, 2018.
S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, et al., “Kinectfusion:
real-time 3d reconstruction and interaction using a moving depth
camera,” in Proceedings of the 24th annual ACM symposium on User
interface software and technology, pp. 559-568, ACM, 2011.

C. Mostegel, M. Rumpler, F. Fraundorfer, and H. Bischof, “Uav-
based autonomous image acquisition with multi-view stereo quality
assurance by confidence prediction,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
pp. 1-10, 2016.

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Computer Vision, 1998. Sixth International Conference
on, pp. 839-846, IEEE, 1998.

X. Zhang, X. Chen, J. L. Alarcon-Herrera, and Y. Fang, “3-d model-
based multi-camera deployment: a recursive convex optimization
approach,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6,
pp. 3157-3169, 2015.

Y. Morsly, N. Aouf, M. S. Djouadi, and M. Richardson, “Particle
swarm optimization inspired probability algorithm for optimal camera
network placement,” IEEE Sensors Journal, vol. 12, no. 5, pp. 1402—
1412, 2012.

978-1-5386-1854-7/18/$31.00 ©2018 |IEEE

Authorized licensed use limited to: Zhejiang University. Downloaded on February 25,2021 at 03:34:29 UTC from IEEE Xplore. Restrictions apply.

520



		2018-08-23T11:42:18-0400
	Certified PDF 2 Signature




