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Multi-Robot Learning Dynamic Obstacle Avoidance
in Formation With Information-Directed Exploration

Junjie Cao", Yujie Wang, Yong Liu

Abstract—This paper presents an algorithm that generates dis-
tributed collision-free velocities for multi-robot while maintain
formation as much as possible. The adaptive formation problem
is cast as a sequential decision-making problem, which is solved
using reinforcement learning that trains several distributed policies
to avoid dynamic obstacles on the top of consensus velocities.
We construct the policy with Bayesian Linear Regression based
on a neural network (called BNL) to compute the state-action
value uncertainty efficiently for sequential decision making. The
information-directed sampling is applied in our BNL policy to
achieve efficient exploration. By further combining the distribu-
tional reinforcement learning, we can estimate the intrinsic uncer-
tainty of the state-action value globally and more accurately. For
continuous control tasks, efficient exploration can be achieved by
optimizing a policy with the sampled action value function from a
BNL model. Through our experiments in some contextual Bandit
and sequential decision-making tasks, we show that exploration
with the BNL model has improved efficiency in both computation
and training samples. By augmenting the consensus velocities with
our BNL policy, experiments on Multi-Robot navigation demon-
strate that adaptive formation is achieved.

Index Terms—Multi-Robot formation, dynamic obstacle
avoidance, reinforcement learning, exploration.

1. INTRODUCTION

HE growing popularity of multiple robots in tasks, such
T as search and rescue, fire-fighting, reconnaissance, and
surveillance, has been driving research towards their au-
tonomous navigation. Multiple robots are usually designed to
achieve tasks by keeping formation, where coordination and
collision avoidance is needed. Many works in robotics have
addressed the problem of collision avoidance in robot navigation
with moving obstacles [1]-[5]. While there has been impressive
progress in the past decade, coordinated autonomous navigation
remains challenging, particularly in uncertain, dynamic envi-
ronments cohabited by dynamic obstacles. The challenges arise
because the decentralization of multiple robots is needed for
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flexibility and the dynamic obstacles’ intents are typically not
known. Based on optimal control theory, Sequential Convex
Programming (SCP) [6] has been used for multi-robot path plan-
ning with good optimality guarantees theoretically. However,
the computational complexity limits the applications of such
centralized optimization-based approaches to few static obsta-
cles and does not scale well with a large number of robots [7].
It is difficult to program a distributed strategy to prevent each
robot colliding and keep in coordination with others. Instead,
recent approaches have used deep learning to model the complex
interactions among multiple robots and obstacles, based on
which the motion controller is learned with samples [8]-[12].
Moreover, the strategy approximated with neural networks can
generalize to different scenarios without tedious parameter tun-
ing, especially for multiple robots in formation where not only
the collision avoidance but also the consensus should be consid-
ered. Reinforcement learning (RL), a popular machine learning
method, can be used to construct such collision avoidance policy
by trial-and-error without labeled data. The sample efficiency in
robot learning process is the focus of RL approaches.

In this paper, the navigation of multiple robots is performed
with consensus-based formation controller and the collision
avoidance is modeled as a sequential decision-making prob-
lem which is solved by training a neural network policy with
reinforcement learning. Recent developments in deep learning
have sparked renewed interest in sequential decision making,
providing neural networks for value function approximation.
Neural networks have proven powerful and flexible in mapping
directly from complex states to the value estimate of actions.
However, it remains difficult to quantify its uncertainty on new
data, which is essential for efficient exploration in sequential
decision making.

There are a lot of works in Bayesian deep learning that
dedicate to quantify neural network uncertainty. As a typical
example, the Bayesian Neural Network maintains a Gaussian
distribution over the parameters of the neural network [13],
while it remains difficult in training both the mean and
variance of all parameters. One ongoing line of research within
Bayesian deep learning aims to develop more practical and
approximate Bayesian inference schemes for neural networks,
such as Monte-Carlo Dropout [14] and Ensemble [15], [16].
Though these approximate methods are easy to implement,
their uncertainty estimations rely on the sampling from
the approximated posterior. It is assumed each sampled
individual neural network will converge to output similarly
where input data has been observed, but predictions will be

2471-285X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on June 28,2022 at 07:54:47 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-0484-8167
https://orcid.org/0000-0003-4822-8939
mailto:cjunjie@zju.edu.cn
mailto:yongliu@iipc.zju.edu.cn
mailto:11801020@zju.edu.cn
mailto:345474136@qq.com

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

diverse elsewhere. Thus, the variance of these sampled neural
networks’ outputs can be interpreted as uncertainty. However,
these uncertainty estimation methods suffer from the complexity
in model training process. The Bayesian liner regression model
has analytic expressions for uncertainty calculation without any
posterior approximation or sampling and is studied in tabular
reinforcement learning with proven bounds on the expected
regret [17]-[19]. Though with efficient uncertainty calculation,
the Bayesian linear regression model still lacks representational
power. We propose to combine both efficient uncertainty calcu-
lation and powerful representation by performing the Bayesian
linear regression on the top of the output of a neural network.

Balancing exploration and exploitation is a fundamental chal-
lenge of achieving sample efficiency in sequential decision-
making. Having an understanding of what is not yet known or
well understood is critical to efficient exploration. So a natu-
ral solution to trade-off exploration and exploitation originates
from tracking the uncertainty about the approximated model
and directing where to explore with the uncertainty [20]-[22].
Beyond tracking the uncertainty, Information Directed Sampling
(IDS) [23] also estimates the instantaneous regret. In the Multi-
Armed Bandit problem, IDS constructs a regret-information
ratio, considering both uncertainty and regret, to balance be-
tween minimizing regret and promoting information gain at
every decision step.

The key contributions of this paper are three-fold: We pro-
posed a new reinforcement learning algorithm that achieves
efficient exploration both in sampling and computation; We
introduced a novel distributed collision avoidance strategy for
formation of multiple robots and provide an empirical analysis
in the simulation of multiple robots point-to-point navigation;
To the best of our knowledge, our method is the first that
in the distributed formation control field where reinforcement
learning is used for dynamic obstacle avoidance. This paper
is organized as follows: We review previous related works in
Section IT and introduce the background in Section III. In order to
achieve efficient exploration both in sampling and computation,
in Section IV, we propose to approximate the action value with
the Bayesian linear regression based on the extracted feature
with the neural network. Then in Section V, we extend the IDS
strategy to the contextual bandit problem and Markov decision
process (MDP) to construct information-directed exploration.
By optimizing a policy with a sampled value function, we
achieve efficient exploration in the continuous control for adap-
tive formation in Section VI. Experiments in Contextual Bandit,
MDP, Continuous Control and adaptive formation are introduced
in Section VII. Finally, we conclude the paper and discuss the
future work in Section VIIIL.

II. RELATED WORK

Combining sampling-based RRT [24] and grid-based forward
search A*[25], MARRT* [26] and DMA-RRT [27] are framed as
Multi-agent motion planning algorithms. However, these algo-
rithms are heuristic and require additional assumptions, such as
sparsity in the environment. From the optimization perspective,
Multi-Robot path planning problems have been framed as Mixed
Integer Linear Programs (MILPs) [28] and Sequential Convex

Programming (SCP) [6]. Such centralized optimization-based
approaches often have good optimality guarantees theoretically.
Still, their computational complexity limits their applications
to few static obstacles and does not scale well with a large
number of robots [7]. Optimal Reciprocal Collision Avoidance
(ORCA) [29] and its extensions [30] have been popular in multi-
robots collision avoidance. However, the search of collision
avoidance velocity is complex. Another line of the approach
is imitation learning, where robots learn to avoid obstacles from
demonstrations of desired behaviors. By imitating the ROS
navigation package’s demonstrations, a policy was trained to
generate motion commands [31]. However, the performance of
the imitated policy is seriously constrained by the quality of the
demonstration. To overcome such limitation, deep reinforce-
ment learning method is proposed to train a mapless motion
planner [32] and achieve multi-robot collision avoidance [8], [9].
This paper also resort to reinforcement learning for Multi-Robot
obstacle avoidance problem. Different from previous works,
our distributed policies are trained to generate collision-free
velocities to coordinate the motion of robots in formation. And
we focus on improving the efficiency of robot learning process.

In solving sequential decision-making problem, heuristic ex-
ploration strategies that rely on adding noise have achieved
impressive performance, such as e-greedy [33] and parame-
ter randomization [34]. These exploration strategies without
direction are inefficient. A lot of works use state novelty to
direct the exploration and achieve human-level performance
in computer games [35]. Compared with state novelty, value
function uncertainty may be a more promising guidance of
exploration for value maximization. Upper Confidence Bound
(UCB) is a prominent uncertainty-directed exploration strategy
that originates from bandit problem [21] and also achieves
impressive success in reinforcement learning [36]. Thompson
Sampling [20] is also a principled exploration strategy directed
by uncertainty. It samples actions according to their posterior
probability of being optimal and often provides better empirical
results than UCB [37]. A log of works [18], [38] extended
Thompson sampling to value-based reinforcement learning.

Information Gain has been used for active data selection [39].
Beyond that, Information Directed Sampling (IDS) [23] pro-
vides a framework to design efficient exploration strategies
that balance the estimated instantaneous regret and the ex-
pected information gain. Through the choice of an appropriate
information-gain function and approximating the value func-
tion with ensemble neural networks, previous work applied
IDS in the exploration for deep reinforcement learning [40].
However, uncertainty estimation with multiple neural networks
in ensemble results in extensive computation. Bayesian DQN
(BDQN) [41] uses Bayesian linear regression on the top of
one neural network instead of learning multiple Q-networks,
resulting in an approximated posterior over Q-function. The
BDQN deploys Thompson Sampling on the approximated poste-
riors to balance exploration and exploitation. However, sampling
the parameter from the high dimensional Gaussian posterior
distribution still bear with high computational complexity.

In this paper, we approximate the action value with Bayesian
linear regression on the top of one neural network. So we
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can achieve an efficient posterior approximation of the value
function. To further improve the efficiency of both computation
and sample, we define the information gain and regret in the
Bayesian model and extend the IDS strategy to information-
directed exploration in the contextual bandit and MDP. And
we also find that Thompson sampling can be applied in the
Bayesian model to achieve the uncertainty-directed exploration
in continuous control tasks.

III. BACKGROUND

A. Consensus-Based Formation Control

A weighted directed graph G = (V, &) with the node set
V={1,...,n} and the edge set £ CV x V is adopted to
describe the communication topology among the n robots. An
edge (i,7) € € indicates that node j can receive information
from node 7, and node ¢ is a neighbor of node j. The set of
all neighbors of node ¢ is denoted by N;. A directed path from
node ¢; to node i, is a sequence of ordered edges in the form
of (imyims1),m=1,...,p— 1. A directed graph is said to
contain a directed spanning tree if there exists at least a node
such that the node has directed paths to all other nodes in G. The
weighted adjacency matrix A = [a,;] € R™" associated with G
is defined by a;; = 0 if (j,¢) € € and a;; = 0 otherwise. The
Laplacian matrix £ = [l;;] € R™" associated with G is defined
as lii = ZjGNi (2% and lij = —aij,i 7é j

Here we derive a distributed control law, designed to drive a
set of robots with single integrator in formation. Consider a set
of N robots modeled by single integrators: @;(t) = w;(t),i =
1,...,N where z;(t) € R” and u;(¢) € R™ denote the position
and velocity, respectively, of the -th robot at time ¢. Moreover,
let the set of vectors x;4, with ¢ = 1,..., N, define a desired
formation, where the desired displacement between the robot ¢
and the robot j corresponds to d;; := ;4 — ;4. Consider the set
of robots communicate according to a communication structure
defined by the adjacency matrix A € R™". Moreover, let the set
of vector x;4 that define the desired formation be given. If there
exist a directed path from v; to all the other nodes, then for the
closed loop system with

1 N
u(t) = p” Zaij [£5(t) — v (zi(t) —z;(t) — dij)] (1)

with i =1,...,N, n;:= 30 agj, v >0, and dyj = 250 —
xjq, the formation is asymptotically satisfied, i.e., x;(t) —
xj(t) = xiq — xjq as t goes to infinity.

B. Bayesian Linear Regression

We have a training set D = {(x;,y;)|i = 1,...,n} = (X,y),
where x denotes an input vector of dimension d, y denotes a
scalar output. x; and y; for all n cases are aggregatedinthe d x n
design matrix X and the vector y,, 1 respectively. Function ¢(x)
maps a d-dimensional input vector x into an m dimensional fea-
ture space. The matrix ®(X),,,«, is the aggregation of columns
¢(x) for all cases in the training set. And the vector of parameters
has length m. For clarity, we define ¢, = ¢(x.), ® = ®(X).

The regression model with Gaussian noise ¢ ~ A'(0, 0%) can
be represented with

fx) =0(x)'w, y=fx) +e )

Assume a Gaussian prior of weights: w ~ N (pg, o), and
calculate the likelihood p(y|X, w) = N (¢(x) " w,o2I). Then
the posterior distribution over the weights is Gaussian:

1
w|X,y ~ N <02A1<I>y + A5 o, 2) ,

A=0200" 551 T=A" 3)

By averaging the output of all possible linear models w.r.t. its
posterior, the predictive distribution for f, = f(x.)is

1
Pl Xy ~ N (0T Ay 4 0T A5 00750,

C. Bandit Problem and Markov Decision Process

In the Multi-Armed Bandit problem, there are no environ-
mental states. The agent simply learns the value of each action:
@, and chooses the action a according to all actions’ values.
Contextual Bandit introduces the concept of state . The state
consists of a description of the environment that the agent can use
to make decision. The goal of the agent in the contextual bandit
is to learn the best action a* not just for a single state, but for any
number of them and achieve the maximum cumulative reward
over time. The expected regret in contextual bandit is defined
as A(a) := E[Qq(x) — Qu(x)], which is the loss in reward for
choosing a suboptimal action a in state . In contextual bandit,
states are independent of the previous states or actions, thus the
value of one action is evaluated with the instant random reward
the agent receives, without the needs to consider the delayed
rewards.

In Markov Decision Process (MDP), an agent in state z; takes
action ay, receives reward r; = R(x¢, a;) and gets transitioned
to the next state x4, with probability p(xi1|x¢, a;) which
depends on the previous state and action. The action value in
MDP is defined as the discounted expected cumulative reward
that agent will receive by first taking action a in state x and
following policy 7 thereafter:

o0
Z'th(xt,atho =x,a0 =a
t=0

Q"(z,a)= E

ag~m(-|zy)

“

D. Modeling Value Function With Distribution

Instead of the expected action value (Eq. (4)), we can es-
timate a distribution of the action value as a random variable
of the discounted cumulative rewards in the future, denoted
as: Z™(x,a) =Y ;o' R(x¢,a;). As a practical algorithm,
Z™(x, a) can be assumed to be Gaussian [42] with parameterized
mean Q™ (x, a) and fixed standard deviation. Without Gaussian
assumption, C51 [43] uses a parametric family of distribution
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Zy(x, a) to approximate full distribution Z™ (2, a), with param-
eter 6. Define a projection operator II:

7 := arg H%inDKL(Za Zp),
0

where Dy, (Z1,Z5) is the Kullback-Leibler divergence be-
tween distribution Z; and Z5. Thus, II projects a distribution Z
into Zy in the parametric family with the smallest discrepancy
from Z. In C51 the distribution Z is updated as:

ZWY (2, a) « TTH ZW (2, a).

where H* is the distributional Bellman optimality operator for

some optimal policy 7*. For a given pair (s;, a;), we can first se-

lect a greedy action for next state «’ = arg maxE[Zy(x441,a)],
a

then update the distribution Zy(s;, a;) to match the target dis-
tribution:

Z = R(xy,ar) +vZp (2441, a") (5)
by minimizing the discrepancy

meinDKL (Z; Z@ ($t7at))- (6)

In practice, we can only sample from the target distribution
x; ~ R(xt,at) +vZg(x441,a"),1 < i < N, then estimate the
target distribution with the empirical distribution:

A 1

Z = Ef\ilﬁd(x —z;),

where 6(x — x;) is the dirac distribution. Then, Eq. (6) reduces
to minimizing D1, (Z, Zy).

E. Policy Gradient Algorithm

Approximating value function can solve Markov Decision
Process where discrete action should be chosen. While continu-
ous control problems are often tackled using policy gradient or
actor-critic methods [44], [45], where a separate parameterized
“actor” policy 7 is learned in addition to the value function
“critic” Q.

Policy gradient methods maximize the expected cumulative
reward by estimating the performance gradient with respect to
the policy parameter vector and updating the parameter vec-
tor with gradient ascent. In stochastic policy gradient meth-
ods [46], stochastic policy samples from a Gaussian distribution
T ~ N(u™(z),0™(2)?I) with u™ and o™ parameterized by
a. In deterministic policy gradient methods such as DPG [44]
and DDPG [45], the critic estimates the action-value function
Q(z, a) using off-policy data which is sampled by a noisy policy.
The noisy policy improves the exploration by adding additive
action noise to deterministic policy: 7, (2) = 74 () + w, where
w ~ N(0,0%I). With the noise variance §° annealing during
training process, deterministic policy gradient methods make a
trade-off between exploration and exploitation.

IV. BAYESIAN NEURAL LINEAR POLICY

We propose to approximate ¢(x) in Eq. (2) with a neural
network to project the input x into the feature space, which is
equivalent to performing the Bayesian linear regression on the

top of the output of a deep neural network. We call this full
model Bayesian Neural Linear (BNL) Model.

A. Uncertainty Estimation

There are two types of uncertainty that exist in model learn-
ing. The first type is model parameter uncertainty, also called
epistemic uncertainty, represented with 3 in BNL. The second
type is intrinsic uncertainty, also called aleatoric uncertainty,
which originates from intrinsic randomness of the real model,
represented with o2 in BNL. With the parameter uncertainty, the
agent can be directed to explore and learn a better model more
efficiently. While intrinsic uncertainty can be irrelevant or even
damaging for exploration.

Instead of assuming a fixed noise variance o~, we model the
joint distribution of w and o%: p(w, 0?) = p(w|o?)p(c?). We
assume o2 ~ IG(ay, b;), an Inverse Gamma distribution. The
distribution of w conditioned on o2 is assumed to be w|o? ~
N (i, 0°%0).

We set the prior hyper parameters: po =0, Ag = A and
ag = by =n > 1, then initially o3 ~IG(n,n) and w|og ~
N (0,02 /1I). After observing D = (X,y), the closed-form
updates for the exact posterior inference [47] is:

S = (@07 + Ao) ™, e = Si(Aopo + @O7).

2

The parameters of the Inverse Gamma distribution of o2 can be
updated with

a; = ag + /2

1 .
be="bo+ 5 (y'y + 1o Yopto — i 3 pue) -

The intrinsic uncertainty can be calculated by sampling from
the Inverse Gamma distribution: 02 ~ IG(ay, b;). And the out-
put variance resulting from the parameter uncertainty is

? = ¢l 5. (7

B. Information Gain

The entropy of the BNL Model can be defined as the entropy
of the posterior w (Eq. (3)):

1 N
H(w) = B log |X| + E(logQTre).

After observing new data D, = (x.,y.) the information gain
about the model is the decrease in entropy:

1 20T, + 271
I(w;D,) = H(w) — H(w; D,) = §log U%};#
t

1 2
= —log :210g’1—|—(72

2

)

s

)
where H(w; D) = —3$log |0 2¢T ¢, + £, | + & (log 27e).

C. Value Function Approximation

In this paper, we consider the sequential decision-making
problem, where an agent infers an action a in state x, according
to the predicted value Q.
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In discrete action scenarios, we model the predicted value
Q; with BNL Model, where for each action a; we share the
neural network ¢(x) but the Bayesian linear parameter w; is
independent. Different from linear models that directly regress
values Q; on x, we independently train a deep neural network
to learn a representation ¢(x), and then use a Bayesian linear
regression to regress ; on ¢(x). The network is only used
to find good representation ¢(x). In addition, we can update
the network and the Bayesian linear regression at different time
scales. In our experiments, the network is only updated after
a number of points have been collected. Then, we perform a
forward pass on all the training data to obtain ¢(z), which is
then fed to the Bayesian linear regression.

In continuous control problem, the value function Q(z, a) is
approximated with BNL Model which takes (x, a) as input and
outputs the value estimation. Then the BNL Model extracts a
representation ¢(z, a) and regresses Q(z, a) on ¢(z, a).

The uncertainty of the value function can be calculated ac-
cording to the BNL Model. The output variance resulting from
the parameter uncertainty is calculated with Eq. (7), representing
the epistemic uncertainty of the learned value function. The
noise variance can be sampled from the updated Inverse Gamma
distribution: 02 ~ IG(ay, by ), representing the intrinsic random-
ness of the environment. Sequentially estimating the parameter
uncertainty Y, allows the agent to explore accordingly and to
improve its understanding of the environment adaptively.

V. EXPLORATION WITH BAYESIAN NEURAL LINEAR POLICY

With BNL Model approximating the value function, the un-
certainty of the value function can be represented and can be
used to direct the exploration.

Information-Directed Sampling (IDS) [23], [48] is a Multi-
Armed Bandit algorithm. It chooses the action with the smallest

AH((‘;))Z, where [(a) is the information

regret-information ratio:

gain and regret A(a) is the loss in reward for choosing action
a. IDS trades-off between incurring small regret and acquiring
more information at each step. In this section, we extend the
result of IDS [23] to contextual bandit and MDP problems
with discrete action space, taking advantage of the powerful
representation and efficient uncertainty calculation in the BNL
model. For continuous control problems, we sample a value
function from the Bayesian linear model and propagate the
gradient to the policy function to perform policy optimization.

A. Exploration in Contextual Bandit

We cannot directly compute the expected regret in contextual
bandit since it depends on the unknown optimal action a*.
Instead, IDS uses a conservative regret estimate, which extended
to the contextual bandit is

Ag(z) = maxugy (x) — lo(2), )

a'eA
where [, (), uq ()] is a confidence interval which contains the
true expected action value @, (x) with high probability. Based
on the mean and variance estimate of the action value Q,(x),

the confidence intervals can be defined as:

la(z) = pa(®) = Asa(@), va(®) = pa(®) + Aa(z)

where ¢2 = ¢I'%, ¢, is derived in Section IV-A. The first term
in the right of Eq. (9) corresponds to the maximum plausible
action value could receive at a state x, while the last term [, ()
lower-bounds the value of the chosen action. As a result, Eq. (9)
provides a conservative estimate of the true regret.

According to Eq. (8), the information gain for choosing action
a and observing (), can be calculated with

Sa(@)?
0a()?

In particular, the information gain I, (x) is small for actions
with little epistemic value uncertainty or with high intrinsic
randomness in observed value. o,(x)? is explicitly dependent
on the selected action a and state x, which allows the exploration
strategy to account for heteroscedastic noise.

With the regret and information gain calculated in Eq. (9)

and Eq. (11), agent can choose the action with minimum regret-

information ration: A“((;)). Then, the information-directed ex-

ploration through the BNL model balances between incurring
minor regret and acquiring more information at each step, i.e.
exploration and exploitation trade-off.

(10)

I (z) = 1log‘1+ (11)

2

B. Exploration in Discrete Action Space

Similar to BDQN [41], we use BNL model to approximate
the action value function in MDP: Q™ (x,a) (Eq. (4)), with
independent Bayesian linear regression parameter w, for the
value of each discrete action a.

In order to apply the Information-Directed exploration in
MDP, we have to define the regret A™(x,a) and information
gain I(z,a). It is straightforward to extend the instantaneous
regret calculation in contextual bandit to MDP, i.e. Eq (9), with
[la(2), uq(x)] representing the confidence interval of Q™ (z, a).
In order to calculate the confidence interval and the information
gain [(z,a), we need to estimate both epistemic and intrinsic
uncertainty of Q™ (z,a), represented with ¢,(x)? and o, (z)?
respectively.

With the Bayesian linear parameter uncertainty in the BNL
model, epistemic uncertainty can be calculated with ¢, (z)% =
ba(2)TSu ¢ (), where ¥, is calculated according to Eq. (3).
For estimating the intrinsic uncertainty we resort to the distribu-
tional reinforcement learning (C51) [43]. Instead of the expected
action value, distributional reinforcement learning estimates a
full distribution of the action value: Zy(x, a). However, accord-
ing to the previous study [49], the estimated value distribution
Zp(x,a) is a mixture of the parametric and intrinsic uncertain-
ties. So we calculate the intrinsic uncertainty by removing the
parametric uncertainty from Zy(z, a):

Var(Zy(z,a))
O—(Qz(m> - 1 Var(Z ;
o aeaVar(Z(z,a))
where we normalize the distribution variance Var(Zy(x,a)),

allowing the agent to account for the numerical differences
across environments as in [40].

—(z), (12)
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State @ Hidden layers Value Q(z, a)

Zg(x, a)

BLR Output?

Fig. 1. BNL model structure for the action value approximation in MDP.

In MDP, the intrinsic uncertainty of action value calculated
with Eq. (12) has advantages over the Gaussian noise estima-
tion with inverse gamma distribution: 02 ~ I1G(as, b; ), because
such intrinsic uncertainty can be propagated through time with
distributional reinforcement learning, thus providing a global
uncertainty estimation.

To perform the distributional reinforcement learning in the
BNL model, we share the hidden layers with the value dis-
tribution approximation model. The BNL model regresses be-
tween the state = and the mean of the target output distribution
ri +vZg(x411,a’) (in Eq. (5)), to ignore the intrinsic noise of
the action value. The structure of the combined value function
model is illustrated in Fig. 1. It only shows the value output
of one action, including the value distribution and the output
of Bayesian linear regression. The hidden layers are shared
between the value models of each discrete action.

Then, the information gain and regret-information ratio can
be calculated as in contextual bandit. The agent takes action
with minimum regret-information ratio % to achieve the
information-directed exploration.

C. Exploration in Continuous Action Space

Based on DDPG [45], we use BNL model to approximate the
action value function: Q™= (z, a), where a = m,(x). In DDPG,
policy parameter is optimized by maximizing Q™ (x, a) with re-
gard to v and the trade-off between exploration and exploitation
is performed by annealing the additive action noise. While we
perform exploration by sampling the linear parameter from its
posterior w ~ N (u¢, Xy before each update and constructing a
specific action value function which is maximized by updating
the policy.

Policy gradients computed by maximizing the sampled action
value function may lead to better exploration directly in the
policy space. And it bears some similarity with Thompson Sam-
pling [20] where the action value function guides the exploration
in the action space.

VI. ADAPTIVE FORMATION WITH NEURAL LINEAR POLICY
A. Problem Formulation

We consider a multi-robots scenario where n robots navigate
to their own goal positions while keeping in formation and avoid-
ing m other moving robots (dynamic obstacle). We formulate the

multi-robot adaptive formation problem as a sequential decision-
making problem, where a distributed collision avoidance policy
is built on top of the consensus-based formation controller.

Each robot’s state is composed of the robot’s observ-
able states and unobservable states, s;; = [s7,, s/",]. The ob-
servable states are the robot’s position, velocity and radius,
Sit = [Da, Py, Vo, Uy, 7] € R®. The unobservable states are the
robot’s goal position, maximum speed, and orientation, sﬁt =
[Pgzs Pgys Vmazs ¥] € R*. The action is a speed and change of
heading angle u; = [v;, §1);] € R2. The observable states of all
n +m — 1 other robots are concatenated into Sft

B. Consensus-Based Formation Planning of Multi-Robots

According to the protocol of consensus-based formation con-
trol Eq. (1), the consensus-based formation velocity for each
robot 7 is

N
vi(t) = azaij [vj(t) = (pi(t) — p;(t) — dij)]
=1

+8[pi,g — Pi(t)] (13)
where d;; := p;q — Pjq is the desired displacement between
the robot ¢ and the robot j. p = [py, py), v = [vg, v,] are the
vectors of the position and velocity corresponding to &,  in Eq.
(1) respectively. p; 4 is the goal position of robot 4. To drive
each robot move to its goal, we add beta[p; , — p;(t)] to Eq. (1,
where o and /3 are two weighting coefficients.

C. Extending Formation Planning to Dynamic Obstacle
Avoidance With RL

Based on the consensus-based formation velocity v;(¢) in
Cartesian coordinates, the speed and change of heading angle
uy = [vg, 01b¢] can be constructed. To avoid collision with other
moving robots, a modification of the formation velocity is con-
structed as a policy: 7 : (s¢,S¢) — a; = [dvy, 51| € R?. The
policy should be optimized with the objective of minimizing
expected time to goal E[t,] while avoiding collision with other
robots,

argmin E |, | s;,S?,m;
ks

st [Pt — Pjtlly > i +1y VjFd, Ve

where the expectation is with respect to the other agent’s unob-
servable states (intents) and policies. The optimization problem
is subject to the collision avoidance constraint and is solved by
optimizing policy m; with reinforcement learning.

By executing the combined action:

] (Si,tfla S;’)t,l) +vi(t—1)

=ai(t —1) +u;(t — 1) = [0vg, 6] + [vg, 9] (14)
the agents’ kinematics are updated:
Pit =Pit—1 + At (a;(t —1) +u(t —1)) Vi (15)
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D. Information-Directed Exploration to Train the Policy

We construct the obstacle avoidance policy 7; with our Neural
Linear Policy, where the joint world state, s/°" = (Sits qu,t)’
is as input to the Neural Linear Model. The linear and angular
speed is chosen as the action of each robot, which is discretized
to form action space. With the BNL Model, the value of discrete
action of obstacle avoidance can be evaluated with uncertainty
which directed the exploration of robots, i.e. the data sample to
train the model. A reward function is specified to award each
robot for reaching its goal, and penalize each robot for getting
too close or colliding with other robots.

1 if p=py
R (s a) =¢ —0.25 if ||pis — Djilly >ri+1; Vi#i
—0.01 otherwise

(16)
In sampling data with Information-Directed Exploration, we
terminate one episode when there is a collision or all robots
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arrive at their goals. So, the reward —0.01 promotes the robot
to move to the goal as soon as possible. With the uncertainty
directing the exploration (data sampling) and reward function
directing the optimization, the distributed obstacle avoidance
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policy can be optimized efficiently and augment the formation
velocity to achieve adaptive formation.

VII. EXPERIMENTS
A. Contextual Bandit

We test our method in the classic Mushroom dataset [50],
which contains 22 attributes per mushroom and two classes:
poisonous and safe. We define a bandit problem where a random
mushroom is selected from the dataset, and the agent decides to
eat or not according to the mushroom’s attribute. If the agent
does not eat the provided mushroom, the reward is 0. Eating
a safe mushroom provides a reward that follows the Gaussian
distribution r ~ A/(1, 1), while eating a poisonous mushroom
delivers a reward r ~ A/(—3,1). The attributes do not indicate
poisonous or safe directly, but the relationship should be learned
from the rewards. The goal of the agent is to minimize the
cumulative regret in n decisions. In our experiments, we set
n = 4000.

Thompson Sampling is a popular exploration strategy and
often provides better empirical results than UCB [37], so we
choose Thompson Sampling as the baseline, using the Bayesian
neural network [51], Bootstrapped neural networks [15] and the
BNL model to approximate the posterior. We abbreviate these al-
gorithms as “BNN-TS,” “Boot-TS” and “BNL-TS” respectively.
In our experiments, each neural network has only one hidden
layer with 50 units. The BNL model builds the Bayesian linear
regression, instead of the full-connected layer, on the top of the
hidden units. The training batch size is 512 in all experiments.
The neural network update interval is 50 steps for all algorithms,

Formation movement with dynamic obstacles moving in opposite direction (top), moving in side direction (middle) and spreading out(bottom).

and we update the Bayesian linear parameters w in every step
for the BNL model.

We compare our method with others in the cumulative regret.
Fig. 2 shows that our method incurs the smallest cumulative
regrets over the whole sequential decision-making process,
demonstrating the sample efficiency of our information-directed
exploration.

Neural network training takes up the central part of computing
resources. The overall training time varies a lot by changing
the hyperparameter: network update interval. We compare the
final time consuming and the cumulative regrets incurred by
these methods with different neural network update intervals. All
experiments are conducted on the same platform (Intel i17-6700
CPU and TITAN X GPU).

Though all the training time decreases as the update interval
increases, our method takes less time to finish the whole process,
as shown in Fig. 3. The Bootstrapped model takes more time
for training, because there are several neural networks trained
at the same time. “BNN-TS” takes the least training time,
where the decision is the direct output of the neural network.
However, “BNN-TS” incurs terrible cumulative regret due to
the unstable training of the Bayesian neural network, here we
minimize the evidence lower bound following [51]. From the
performance of “BNL-TS,” we can see that exploration with
Thompson Sampling, which need sampling from the parameter
posterior at every step, is also time-consuming. In contrast,
our method calculates the regret-information ratio and explores
according to the ratio without sampling. Thus, as shown in Fig. 3
our method is the only one that incurs the least cumulative
regret and achieves efficiency in computation at the same time.
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Apart from the neural network update interval, our method has
two important hyperparameters: the Bayesian parameter update
interval and A in confidence interval calculation, Eq. (10). Fig. 4
demonstrates that the performance of our method is not very
sensitive to these hyperparameters. But it is still obvious that the
performance deteriorates as the Bayesian parameter is updated
less frequently. Too small A reduces the confidence interval and
biases the estimation of the expected regret. As a result, it incurs
a huge regret as shown in the last subfigure in Fig. 4.

B. Markov Decision Process

We evaluate our method in MDP with five simu-
lated tasks: “CartPole-v0,” “Acrobot-v0,” “MountainCar-v0,”
“LunarLander-v2” and “Gridworld-Door & Key”. The first four
environments are provided in OpenAl Gym. “Gridworld-Door
& Key” is from Minimalistic Gridworld [52], where the agent
must pick up a key to unlock a door then arrive at a prescribed
goal position across the door. A reward is received only after the
task is accomplished. We modify these original tasks by adding
heteroscedastic noises to all the environments’ original rewards,
with variance be 0.1 times of the original rewards.

We compare our method with Bootstrapped DQN [15],
Bayesian DQN [41], and Bootstrapped IDS [40], abbreviated
as “BootDQN,” “BDQN” and “BootIDS”. In “BootDQN” and
“BootIDS,” the value function is approximated with multiple
neural networks in ensemble. “BDQN” uses Bayesian neural
liner model but with Thompson Sampling for exploration as that
in “BootDQN”. “BootIDS” explores with information-directed
sampling and estimates the uncertainty with the variance of
multiple neural networks’ outputs.

In our experiments, all algorithms use the same full connected
neural network with two hidden layers and 64 units for each.
The learning rates decrease from 0.001 to 0.00001 during all
the training processes, and the batch size is 32. All the experi-
ments below use the same platform with Intel i7-8700 CPU and
GTX1080Ti GPU. In Fig 5, we present the experiments’ results
from the perspective of sample and computation time needed for
training.

Our method achieves competitive results in all five tasks,
both in sample efficiency and in computation (time) efficiency.
Especially in the tasks with sparse rewards, “LunarLander-v2”
and “Gridworld-Door & Key,” our method outperforms other
methods by a large margin. Though “BDQN” models the action
value function with BNLmodel, it could not accomplish the last
two tasks which are difficult with sparse rewards. We think that
the noisy rewards result in an action value with heteroscedastic
noise, which is challenging for “BDQN” and “BootDQN”. In
comparison with “BootIDS” which also uses the IDS strategy
for exploration, our method has better performance, taking
advantage of the efficiency of the BNL model in uncertainty
estimation.

C. Continuous Control Tasks

In continuous control tasks, we build the value function with
the BNL model and optimize the policy with policy gradient
method. We call the method Bayesian DDPG (BDDPG). To

demonstrate the performance of BDDPG, we compare it with
the original DDPG in two continuous control tasks from OpenAl
Gym: “Pendulum-v0” and “Halfcheetah-v2”. We also modify
“Pendulum-v0” to be with sparse rewards, where at each time
step “Sparse Pendulum” gets a reward 1 for near upright within
0.01 (rad) and “More Sparse Pendulum” gets a reward 1 for near
upright within 0.001 (rad).

Fig 6 presents the results in continuous control tasks and
demonstrates that our improved exploration with BNLmodel
does not enjoy many advantages in the continuous control tasks
with dense reward feedback. However, in tasks with more sparse
reward feedback, efficient exploration with Bayesian model
plays a more critical role.

D. Adaptive Formation

Through extensive experimental analysis using randomly
generated point-to-point formation tasks, we further validate
our BNL policy in the dynamic obstacle avoidance of multiple
robots in formation. The BNL model is constructed to evaluate
the state-action as in (V-B). The actions are constructed with
the combination of discrete speeds and heading angle changes
uy = [vg, 0. For each robot in formation, an independent
BNL model is built with observation vector gft as input which
concatenates the robot’s full states and all n +m — 1 other
robots’ observable states. We treat the action generated with
the BNL policy as a modification to the formation velocity Eq.
(13). To calculate the formation velocity, the communication
topology among the robots in formation can be any directed
graph, including a spanning tree.

In the experiments, BNL model is constructed with 64 nodes
in the hidden layers. We set the maximum of time steps in one
episode as 500, every time step represents 0.2 s, and the training
batch size is chosen as 512. The learning rate decays from 0.001
to 0.00001 during the training process. Fig. (7) in our experi-
ments show the trajectories of all robots. In those experiments,
there are eight robots (marked from 077) with unicycle dynamic
and maximum turning angle in 0.2 seconds is set as 0.27 rad.
The safe radius of every robot is 0.1 to avoid collision. Robot
073 should be in formation, moving to their individual goal and
avoiding collision with other robots. Robot 477 are treated as
dynamic obstacles which moving straightforward with different
starts and goals. In our experiments, the dynamic obstacles
are moving independently with different patterns, presented in
Fig. (7) for example, in the opposite direction (top) and side
direction to the robots in formation (middle). In the bottom of
Fig. (7), dynamic obstacles are spreading out from the vicinity
of original point. The experiments show that the policy trained
with our method drives multiple robots to goal positions and
avoids collision with other moving robots successfully while
maintaining formation as much as possible.

VIII. CONCLUSION AND DISCUSSION

In this paper, we first focus on improving the efficiency of
exploration w.r.t. the sample and computation in sequential
decision making. We approximate the state-action value with
the BNL model that combines Bayesian linear regression with
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neural network and achieves computational efficiency in uncer-
tainty representation. By defining the information gain about
the learned BNL model and the regret for each decision step,
we extend IDS to the contextual bandit problem and MDP.
In MDP, we estimate the global intrinsic uncertainty of the
action value with distributional reinforcement learning, consid-
ering a mixture of the aleatoric and epistemic uncertainty in it.
We perform Thompson sampling in the BNL value function,
based on which a policy can be optimized to achieve efficient
exploration in continuous control tasks. Several experiments
demonstrate the improved efficiency of our proposed method in
the Contextual Bandit problem and MDP. We find that the BNL
model provides an efficient estimation of uncertainty, based on
which information gain and regret can be calculated efficiently.
Thus, our information-directed exploration strategy provides an
efficient solution for sequential decision making.

We then apply the BNL model to Multi-Robot learning dy-
namic obstacle avoidance in formation movement by training
the BNL policy with information-directed exploration. Central
to our method’s scalability and success combines a consensus-
based formation movement and an on-demand collision avoid-
ance strategy. The strategy is focusing on obstacle avoidance and
is trained with reinforcement learning. Our method is validated
through many simulations where dynamic obstacles move with
different patterns relative to the robots.

Thus, our information-directed exploration strategy provides
an efficient solution for sequential decision making. However,
our method has limits in representing the uncertainty of very
deep neural networks. Further research can be conducted to
perform our method on the representations that are learned
with unsupervised learning such as variational auto-encoder, to
further improve the efficiency and generalization. The configu-
ration of multi-robots is sensitive such as the number of robots
and the safe radius. Randomizing such configuration parameters
to train a robust policy deserves further research.
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