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Abstract— The Robot with nonlinear and stochastic dynamic
challenges optimal control that relying on an analytical model.
Model-free reinforcement learning algorithms have shown their
potential in robot learning control without an analytical or sta-
tistical dynamic model. However, requiring numerous samples
hinders its application. Model-based reinforcement learning
that combines dynamic model learning with model predictive
control provides promising methods to control the robot with
complex dynamics. Robot exploration generates diverse data
for dynamic model learning. Model predictive control exploits
the approximated model to select an optimal action. There is
a dilemma between exploration and exploitation. Uncertainty
provides a direction for robot exploring, resulting in better
exploration and exploitation trade-off. In this paper, we propose
Model Predictive Control with Posterior Sampling (PSMPC) to
make the robot learn to control efficiently. Our PSMPC does
approximate sampling from the posterior of the dynamic model
and applies model predictive control to achieve uncertainty
directed exploration. In order to reduce the computational
complexity of the resulting controller, we also propose a PSMPC
guided policy optimization algorithm. The results of simulation
in the high fidelity simulator “MuJoCo” show the effectiveness
of our proposed robot learning control scheme.

I. INTRODUCTION

Constructing a dynamic model with transfer function or
state-space model plays a significant role in controlling a
robot or complex mechanical system. However, it is difficult
to model and control a nonlinear or stochastic dynamic
system, though linearization is usually adopted with bias
hindering its performance. In recent years, with the rise of
machine learning and deep learning, a significant research
area in robotics centers on approaches where the robot dy-
namic model or controller is learned. The sample efficiency
of robot learning control is the focus of these approaches.

When sufficient data are available, we can rely upon
machine learning methods to learn an approximation of
the dynamic system as a whole. The data for learning a
statistical model should be sufficient and diverse which is
corresponding to the persistent excitation for system iden-
tification of a physical model. Without learning a dynamic
model, reinforcement learning provides a promising method
for robot learning control via value function approximation.
For learning a dynamic model or a value function, data is
collected by robot exploring the environment. On the other
hand, robot need to exploit the approximated model about the
system. There is a dilemma in every action selection: should
the robot take actions that maximize the objective based on
its current knowledge about the system or instead investigate
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poorly understood states and actions to learn a better model
and potentially improve future performance. This challenge
is known as the exploration and exploitation trade-off.

Instead of fully uniform random exploration, most re-
inforcement learning methods use ε-greedy exploration to
trade-off exploration and exploitation [1]. However, these
methods are heuristic and known to be inefficient [2]. We
call these methods undirected forms of exploration, without
using any knowledge about the learned model. Having an
understanding of what is not yet known or well understood
is critical to effective exploration for better model learning.
Inspired by human intelligence in exploration, with limited
data and large uncertainty there is reason to explore, while
near certainty naturally transfer to exploitation. So a natural
solution to trade-off exploration and exploitation originates
from tracking the uncertainty about the approximated model
which directs where to explore. There are two types of
uncertainty that exist in learning a statistic model: epistemic
and aleatoric uncertainty. Epistemic uncertainty, also called
model parameter uncertainty, results from a lack of training
data in certain areas of the input domain. Aleatoric uncer-
tainty originates from intrinsic randomness of the real model,
maybe caused by the noise or other inherent property.

There are a lot of studies in Bayesian machine learning
that dedicate to quantify model uncertainty. Bayesian neural
network [3] may be a typical example, while it suffers from
difficulty in training. Monte-Carlo Dropout [4] and Ensem-
ble [5] aim to develop faster, more practical, approximate
Bayesian inference schemes for neural networks. Neural
network ensemble, as a practical method that is easy in
implementation, has a long history dating back to [6], and
remains popular today [5], [7]. It is assumed each individual
neural network will converge to similar result where data
has been observed, but predictions will be diverse elsewhere.
Thus, the variance of these neural networks’ predictions can
be interpreted as epistemic uncertainty.

In this paper, we study the robot exploration and exploita-
tion trade-off for learning a dynamic model and achieving
optimal control. It is important to distinguish and quantify
both kinds of uncertainty in approximated dynamic model.
With epistemic uncertainty, data collection can be directed
to diminish such uncertainty and a more accurate dynamic
model can be build. Though aleatoric uncertainty cannot be
removed and used for exploration, it can generally predict
possible outcomes and represent the real dynamic more fully
for better controlling it. With the guidance of the model-
based controller, we propose an efficient policy optimization
method, to improve the practicability of our learning control
in real-time situations.
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II. RELATED WORK

In recent years, learning from demonstration has been
successfully used in the field of robot learning control with
applications in autonomous helicopter [8], playing table
tennis [9] and manipulator [10]. Demonstration provides a
good guidance for robot learning. While it is difficulty to
access numerous demonstrations and to teach a robot to
accomplish a complex task only with the demonstration.
Reinforcement learning also provides a promising method
for robot learning control in stochastic environments. For
example, algorithm based on actor-critic methods [11] and
policy gradients [12] have shown success in learning very
complex robot skills in high-dimensional state spaces, such
as robotic locomotion [13]. Other than learning a value
approximation or a policy function, a lot of works in robot
learning control rely on the dynamic model approximation
[14]–[16]. However, these methods don’t take into account
the robot exploration for learning a better dynamic model
efficiently, which is one of the contributions in our work.

Reinforcement learning algorithms with undirected ex-
ploration have achieved impressive performance in robot
learning control, such as ε-greedy [1] and parameter ran-
domization [17]. These exploration strategies are inefficient
without direction. A lot of works [18], [19] use state novelty
to direct the exploration and achieve human level perfor-
mance in computer games. Upper Confidence Bound (UCB)
is a prominent uncertainty directed exploration strategy that
originates from bandit problem [20] and also achieves im-
pressive success in reinforcement learning [21]. Thompson
Sampling [22], also called Posterior Sampling, is also a
principled exploration strategy directed by uncertainty. It
samples actions according to their posterior probability of
being optimal. Thompson Sampling often provides better
empirical results than UCB [23]. Osband et al. successfully
extended Thompson sampling to value based reinforcement
learning [24]. In this paper, we resort to Thompson Sampling
in the context of model-based learning control. Different
from the directed exploration with information gain of
learned dynamic model, presented in VIME [25], our model-
based exploration strategy is directed by the uncertainty of
trajectory value estimation.

Contrary to many previous works in model-based learning
control [8], [10], [14] that don’t take into account the
representation of uncertainty, PILCO [26] approximates the
dynamic model with Gaussian Process and achieves high
sample-efficiency in learning a controller. In order to improve
the scalability of PILCO, Gal et al. used Bayesian drop-out in
neural network to track parametric model uncertainty [27].
However, there are criticisms and a counterexample about
dropout as a way to make neural networks Bayesian [5]. In-
stead, we will represent the uncertainty of our approximated
dynamic model with neural network ensemble.

III. ROBOT CONTROL WITH DYNAMIC MODEL
LEARNING

In this section, we first validate robot learning control with
machine learning method by presenting an example of linear

dynamic control. Second, we introduce how to approximate
a nonlinear dynamic system using neural network. Based
on the learned nonlinear dynamic, Model Predictive Control
can be applied to achieve optimal control. Then, we aug-
ment the neural network dynamic model with ensemble and
distribution output to represent the epistemic and aleatoric
uncertainty respectively. The resulting dynamic model is an
approximate and practical implementation of Bayesian neural
network. In this paper we use x to represent the state of the
robot system and u to represent the control command or the
action taken by the robot.
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Fig. 1: Point mass position control comparisons: PID and
LQR with leaned linear dynamic.

A. Optimal Control with Linear Dynamic Regression

As a key component of system identification, parameter
estimation provides a basic method for robot learning control
without knowing the full dynamic system beforehand. Take
a simple point mass in horizontal plane for example, where
the point mass is actuated to move with the force in the
same plane. The physical model of the point mass can be
approximated using a linear system with the state space
model: ẋ = Ax + bu, where A, b represent the parameters
and x is the state of the point mass, including its position
and velocity. And u is the force applied in the point mass.
Rewriting the state space model in discrete format: xt+1 =
A′xt + b′ut we can get a linear function with (xt, ut) as
the input and xt+1 as the output. By controlling the point
mass with varying force and collecting state and force values
(xt, ut, xt+1) during a period, a complete data set can be
constructed to represent the dynamic system fully. Even
though with data noise in (xt, ut, xt+1), the parameters of
the discrete state space model, i.e. A′ and b′, can be estimated
with linear regression. Based on the learned linear dynamic
model, model-based control can be applied straightforward.

The point mass can be controlled to move and stop at
a fixed position with PID controller without knowing the
exact value of A′, b′. On the other hand, we can construct
a quadratic cost function about the state and control output,
then Linear Quadratic Regulator (LQR) can be applied with
learned linear dynamic model. We simulate such simple
example in MuJoCo physical simulator [28], with the results
illustrated in Fig. 1. It is obvious that optimal control with
learned dynamic has better performance compared with PID
controller without extensive controller tuning.
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B. Model Predictive Control with Learned Dynamic Model
Neural network provides a powerful function to approx-

imate the dynamic model for robot control. The learned
neural network dynamic model can be parameterized as
x̂t+1 = f̂θ(xt, ut), in which θ represents the parameter of the
neural network and f̂ is a nonlinear function approximation.
Such approximated dynamic model takes as input the current
state xt and action ut, and outputs the predicted next state
x̂t+1. However, this form of dynamic model function can be
difficult to train when the states xt and xt+1 are too similar
and its differences can not indicate the underlying dynamics
well [14]. It is more benefit to learn a nonlinear function of
the change in state st over the time step duration of ∆t [14].
As a result, the next state prediction is:

x̂t+1 = xt + f̂θ(xt, ut). (1)

To construct a data set D with size |D|, we can control
the robot with a series of random commands and collect the
trajectory τ = (x0, u0, · · · , xT−2, uT−2, xT−1). The data set
contains (xt, ut) and xt+1−xt as the input and target output
value of the nonlinear function. Then supervised learning can
be used to train a neural network to approximate the dynamic
model. The model learning is to minimize the mean square
error (MSE):

JMSE(θ) =
1

|D|
∑

(xt,ut,xt+1)∈D

1

2

[
(xt+1 − xt)− f̂θ(xt, ut)

]2
(2)

To control robot as expected, we can define a cost
function about the robot state and the action: C(xt, ut).
Unlike in LQR, the nonlinear cost function here usually is
not quadratic. To find a sequence of commands U(H) =
(u0, · · · , uH−1) to control the robot over a finite horizon H ,
the cumulative cost should be minimized:

U(H) = arg min
U(H)

H−1∑
t=0

C(x̂t, ut) (3)

where x̂0 = x0, x̂t+1 = x̂t + f̂θ(x̂t, ut).
We can not get an analytic solution of Eq. (3), due to

the dynamic and cost functions being nonlinear. Random
sampling shooting method [29] first generates a lot of
candidates of action sequences randomly, then predicts the
corresponding state sequences using the learned dynamic
model. The candidate with the lowest expected cumulative
cost will be chosen as the solution. Instead of random
sampling, we use Cross-Entropy Method (CEM) [30], which
samples action sequences from a distribution closer to pre-
vious action sequence samples that yielded low cumulative
cost. It is more reasonable to sample the action sequences
with a plan horizon h ≤ H instead of the whole horizon H
for diminishing the cumulative error of the state propagation.
Rather than executes all planned actions with length h in
open-loop, robot should take only the first action. After
receiving new state information xt+1, replanning the optimal
action sequence at the next time step construct a closed-loop
control. This control scheme is known as model predictive
control (MPC).

C. Uncertainty Representation in Nonlinear Dynamic Model

Though with good performance in linear dynamic learning
control, linear regression has difficulty in approximating
a stochastic and nonlinear dynamic model. The nonlinear
dynamic model learning process requires numerous data
generated in sequence during the control process. Before
substantial data is available, neural network with powerful
expressive ability tends to overfitting and results in high
prediction error in front of the states that robot has never ex-
perienced before. Along with the prediction error, uncertainty
exist in the partially learned dynamic model. Uncertainty is
critical to prediction and control with learned model, while
it is ignored in neural network model learning. To overcome
the problem of overfitting and represent the uncertainty of
learned dynamic model, we resort to the Bayesian deep
learning methods.

1) Aleatoric Uncertainty Representation: In a general
regression setup, the neural network takes a vector of input
and generates a corresponding prediction. While, we force
the neural network to output the parameter of a probability
distribution, from which the prediction is sampled. The
inherent randomness of a stochastic dynamic is reflected on
the output distribution which is reasonable to be assumed as
Gaussian. Then our proposed neural network model outputs
the estimated mean and variance of the distribution, i.e.
the differences between states xt and xt+1 are normal
distributed:

∆̂ = x̂t+1 − xt ∼ N (µ̂(xt, ut), σ̂(xt, ut)|θ), (4)

where θ is the parameter of neural network. This neural
network model with distribution output is able to capture
the intrinsic randomness or aleatoric uncertainty of the
dynamic system. While we assume a Gaussian distributed
randomness in our example, the method can be applied to
other parametric distributions in the same way.

In the training process, instead of using the mean squared
error (MSE) loss function Eq. (2), we take into account
the variance that we want to estimate along with the mean
value. The optimization can be achieved using a maximum
likelihood (ML) approach, where we take the negative log-
likelihood function of the Gaussian distribution as the loss
function: − log p(∆|xt, ut). After averaging over multiple
samples and ignoring constants, we get the mean negative
log-likelihood (MNLL) as the objective function:

JMNLL(θ) =
1

|D|
∑

(xt,ut,xt+1)∈D

[
log σ̂2

2
+

(∆− µ̂)2

2σ̂2

]
,

(5)
where ∆ = xt+1−xt represents the true difference between
successive states and µ̂, σ̂ are the estimated mean and vari-
ance with input (xt, ut).

2) Epistemic Uncertainty Representation: Instead of
training a single neural network, we are going to train an
ensemble of M networks with different random initialization.
By training these neural networks with the same data, we
expect all models to predict similarly in areas of sufficient
training data, and the prediction will be completely different
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where there is scarce or no data available. The epistemic
uncertainty can be estimated with the variance of mean
predictions of those neural networks, which will diminish
when more training data are available. From the perspective
of Bayesian neural network, the initialized ensemble neural
networks can be interpreted as a prior. And random selection
from the trained neural networks can be viewed as sampling
from the posterior.

D. State Propagation with Learned Dynamic Model

Based on the ensemble neural networks with distribution
outputs, proposed in Section III-C, we can perform model
predictive control as in Section III-B with the only difference
in state propagation. The overall model predictive control
process is summarized in Algorithm 1.

State propagation plays an important role in optimizing
Eq. (3). With one deterministic neural network approximat-
ing the dynamic model, state propagation is simple and
straightforward. The neural network outputs the next predic-
tion with the combination of previous state prediction and
action (x̂t, ut) as input. For the neural network model that
outputs a distribution, we maintain a population of P parti-
cles for propagating the output distribution. The propagation
begins by creating P particles from the current state: xpt=0 =
x0∀p. Then each particle is propagated by sampling from
the output distribution: xpt+1 ∼ N (µ̂(xpt , ut), σ̂(xpt , ut)|θ),
where xpt is the current particle and ut the action. For
neural networks in ensemble, we keep them independent in
propagating particles. With such state propagation strategy
the aleatoric uncertainty can be maintained and propagated.

Algorithm 1 Model Predictive Control.

Input: Approximated dynamic: fθ and plan horizon h
Output: Average first actions: 1

n

∑n
i=1 U

0
i

1: Random sample U
(h)
i={1,···n};

2: repeat
3: Propagate states with fθ and U

(h)
i={1,···n} by particles;

4: Evaluate U
(h)
i={1,···n} with Eq. (3) and Select U(h)

elites;

5: Gaussian approximation of U(h)
elites: N (µU, σU);

6: Sample U
(h)
i={1,···n} from N (µU, σU);

7: until l times of iteration

IV. ROBOT LEARNING CONTROL WITH UNCERTAINTY
DIRECTED EXPLORATION

As presented in previous section, dynamic model learning
is the key ingredient for robot learning control. The dynamic
model learning process requires many data collected by robot
exploration. In order to learn a dynamic model that represents
all situations the robot will encounter, robot takes random
exploration in the method presented in Section III. However,
the random exploration by taking random action is inefficient
with a lot of repetition and uninformative data collection.
In this section, we first demonstrate a Multi-Armed Bandit

problem where uncertainty directs the decision-making pro-
cess to be more efficient without exploring where it is famil-
iar to the agent. Then, we propose a practical exploration
strategy in model-based learning control, inspired by the
Thompson Sampling [22] in Multi-Armed Bandit problem.

A. Uncertainty Directed Exploration in Multi-Armed Bandit

Multi-Armed Bandit is a static sequential decision-making
problem, where an agent chooses an action a from a given
set A repeatedly over n rounds. For each chosen action,
the environment reveals a reward rt = R(a). The reward
function R(a) is stochastic and unknown. We can approxi-
mate the reward function with the ensemble neural networks
introduced in Section III-B. To illustrate the performance of
uncertainty directed exploration, we train 5 neural networks
with 6 and 7 data points, shown in Fig. 2, where we represent
the epistemic uncertainty with the standard deviation of the
ensemble networks’ output means. As shown in the left of
Fig. 2, with scarce data available our ensemble neural net-
works have high discrepancy. After choosing action 5 where
our model has the highest uncertainty, it is obvious that the
model uncertainty reduced sharply, which is beneficial to
make better decision.

To trade-off exploration and exploitation, we can construct
an acquisition function: µ(a) + κσ(a), where µ and σ
represent the mean and variance of the mean predictions of
ensemble neural networks. Choosing action that maximize
the acquisition function can trade-off exploration and ex-
ploitation by tuning the parameter κ. The acquisition function
µ(a)+κσ(a) is known as the Upper Confidence Bound [20].

Thompson Sampling [22], known as Posterior Sampling,
provides an elegant approach that tackles the exploration-
exploitation dilemma by maintaining a posterior over ap-
proximated reward function. At every time-step, Thompson
Sampling draws one sample from the posterior distribution,
then rank the actions according to the sampled reward
function, after that the highest-ranked action will be taken.
In this work, we use trained ensemble neural networks to
approximate the posterior.
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Fig. 2: Reward function approximated with 5 neural net-
works. Blue thick line and shadow represent the mean and
stand deviation of 5 predictions. Dots represent the available
data.

B. Model-Based Exploration with Thompson Sampling

The key idea in Thompson sampling is to maintain a
posterior distribution over the reward model parameters
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and to choose action that maximize the reward function
sampled from it. We formulate the optimal control in finite
horizon with dynamic model learning as Multi-Armed Bandit
Problem, where Thompson Sampling can be applied for
exploration and exploitation trade-off.

Given the approximated dynamic model f̂θ and the ini-
tial state of the robot system x0, we can predict all the
succeeding states with the action sequence that robot will
take {u0, · · · , uT−1}. Then we define trajectory value as the
cumulative reward a robot will receive over the whole finite
horizon H:

Vθ(U
(H)) =

H−1∑
t=0

R(x̂t, ut), (6)

where x̂0 = x0, x̂t+1 = x̂t + f̂θ(x̂t, ut). Vθ(U(H)) is a
function about the whole action sequence the robot will take,
and is corresponding to the reward function in Multi-Armed
Bandit.

The trajectory value function accumulates the epistemic
and aleatoric uncertainty of the learned dynamic model at
every time step t ∈ [0, H − 1]. So the distribution over
dynamic model constructs the distribution over trajectory
value. To apply Thompson Sampling, we sample from
the posterior of trajectory value by sampling a dynamic
model from its posterior. The process works as follows:
(1) Sampling a dynamic model from its posterior construct
a posterior estimation about the trajectory value which is
a function of action sequence U(H); (2) Maximize the
trajectory value function Eq. (6), constructed by the sampled
dynamic model parameter θ, with Algorithm 1. In our
practical algorithm, we use M neural networks in ensemble
to approximate the distribution over dynamic. The robot
selects j ∼ Unif([1, ..,M ]) at the beginning, then follows
the model predictive control, introduced in Section III, with
the j’th approximated dynamic model for the whole episode
with time horizon H .

C. Guided Policy Optimization

In model predictive control, action must be optimized at
every time steps with the dynamic model learned before. The
action sequence optimization in model predictive control is
time-consuming and hinders its application in real-time con-
trol. However, model-free reinforcement learning methods
usually optimize a value function or policy function from
which action can be obtained directly without additional
optimization. It is benefit to optimize a policy function that
outputs the action with the state as input.

We approximate the policy π with a neural network that
outputs a distribution of action: π = p(u|x; γ), where γ is the
parameter of neural network. We define the model predictive
control as a planner u = P(x) = 1

M

∑M
j=1 Pj(x), where we

average the results of model predictive control with different
dynamic model f{θ1,··· ,θM}. Then the policy function can
be learned with the maximum likelihood, where we are
maximizing the probability (likelihood) of planned action in
the output distribution of the policy. The loss function is the

mean negative log-likelihood:

JMNLL
π (γ) =

1

|D′|
∑
x∈D′

− log p(P(x)|x; γ), (7)

where D′ is the integrated data set containing the states that
robot encountered with the policy π and the exploration
strategy proposed in Section IV-B. The integrated data set
can also be used to train the dynamic model in replace of
the D in Eq. (5). With the combination of whose states,
the policy optimization process prevents the distribution
mismatch problem [31]. The overall algorithm proposed in
this paper is summarized in Algorithm 2.

Algorithm 2
1: Initialize data set D′ with robot random exploration.
2: Train M neural networks f{θ1,··· ,θM} with Eq. (5).
3: repeat
4: Select j ∼ Unif([1, · · · ,M ]).
5: for t = 0, · · · , H − 1 do
6: Get optimal ut from MPC (Algorithm 1) with
fθj ;

7: Take action ut and augment D′ with (xt, ut);
8: end for
9: for t = 0, · · · , H − 1 do

10: Sample ut ∼ π(u|xt);
11: Take action ut and augment D′ with (xt, ut);
12: end for
13: Optimize f{θ1,··· ,θM} with D′ and Eq. (5);
14: Optimize π with sampled x from D′ and Eq. (7);
15: until k times of iteration

V. EXPERIMENTS

Fig. 3: Simulated “Cheetah” and “7-dof Robot Arm”.

A. Experiments Description

The robots in experiments are simulated in MuJoCo [28],
including “Cheetah” and “Robot Arm”, shown in Fig. 3.

Cheetah is a robot constrained in forward-vertical plane.
It can be represented with a state vector of 18 dimensions,
including the position and velocity of its center of mass, the
angles and angular velocities of its 6 joints. Cheetah can
control its 6 joints with torque, i.e. its action is a vector with
6 dimensions. The goal of Cheetah is to run forward as far as
possible in 1000 time steps. So the cost function is defined as
the C(x, u) = −xvfwd+0.1×‖u‖2, where xvfwd represents
the forward velocity which is included in state x.
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The Robot Arm is with 7 degrees of freedom. The state of
the robot system is a vector with 17 dimensions, including
the position of the goal, the angles and angular velocities of
all its 7 joints. What the controller outputs is the torque
of all joints. The goal is to control its end effector to a
prescribed random goal position in 150 time steps. We define
the cost function as: C(x, u) = ‖g(x)−xgoal‖2+0.01×‖u‖2,
where g(x) is the position of the end effector which can be
calculated according to the angles of 7 joints and xgoal is
the random position of goal which is also included in the x.

All neural networks are full connected in our experi-
ments. We use the cumulative reward as the evaluation:∑H−1
t=0 R(x, u) =

∑H−1
t=0 −C(x, u). We compare our al-

gorithms with related works from two aspects: the samples
(steps) and the wall clock time needed for robot learning.
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Fig. 4: The cumulative rewards during the learning process
of “Cheetah” (up) and “Robot Arm” (down), compared from
two aspects: samples (left) and wall clock time (right).
Curves are the mean values. Shadows illustrate the standard
deviation in 5 independent tests.

B. Efficient Learning Control with Uncertainty Directed
Exploration

The main algorithm proposed in this paper is the Model
Predictive Control with Thompson Sampling (Posterior Sam-
pling), called PSMPC. The plain Model Predictive Control
(MPC), where a neural network dynamic model is learned
but without uncertainty directed exploration, is compared
with our PSMPC. Soft Actor-Critic (SAC) is a state-of-the-
art model-free reinforcement learning method, which aims at
learning a policy with policy entropy bonus for exploration.
To demonstrate the sample efficiency of model-based method
we also compare our PSMPC with SAC.

The learning curves of both robots trained with different
algorithms are illustrated in Fig. 4. We do comparisons from
the aspects of samples and time needed for training. For
better illustration, we cut out a part of curves and the whole
experiments are demonstrated by putting the left and right
of Fig. 4 together. It is obvious that our PSMPC achieves
the competitive final results and is more sample efficient
than MPC and SAC. As illustrated in the left of Fig. 4, our
PSMPC is more sample efficient than MPC, by means of the

Thompson Sampling for exploration and exploitation trade-
off. And model-based methods especially our PSMPC has
huge advantage in sample efficiency compared with model-
free method.

C. Model Predictive Control Guided Policy Optimization

Though be sample efficient, our PSMPC takes more wall
clock time to achieve the good performance compared with
SAC, as shown in the right of Fig. 4. The reason is that
our PSMPC need to plan at every time step with the
approximated dynamic model. The planning is actually an
optimization of action sequence. Such controller may not be
applicable on real systems with limited computational power.
Instead, SAC calculate an action with an approximated policy
without additional optimization at every time step.

Taking computational limitations of our resulting con-
troller into account, we propose to distill the planning of
model predictive control into a neural network approximated
policy. With our PSMPC guided policy optimization algo-
rithm, the resulting policy has the similar performance com-
pared with that of our PSMPC. The policy optimization pro-
cess is shown in Fig. 5. With the resulting policy, our robot
learning control has the similar computational complexity as
model-free reinforcement learning during controller execu-
tion, while keeping sample efficient in the learning process.
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Fig. 5: The performance comparisons between PSMPC and
the guided policy. “Robot Arm” (left) and “Cheetah” (right).

VI. CONCLUSION AND DISCUSSION

In this paper we present Model Predictive Control with
Posterior Sampling (PSMPC) as an algorithm for efficient
robot learning control with complex dynamics. Combin-
ing dynamic model learning and model predictive control
builds the basic framework of our PSMPC. Our contribu-
tions include three parts. First, our approximated dynamic
model is an approximation of Bayesian neural network.;
Second, to trade-off exploration for better dynamic model
learning and exploitation of approximated model for op-
timal control, PSMPC uses posterior sampling to achieve
trajectory value uncertainty directed exploration; Third, our
proposed PSMPC guided policy optimization method distills
the model-based controller into a neural network policy,
which outputs optimal actions directly with states as input
without additional optimization.
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From the experiments presented above, our method has
shown applicability for robot learning control in systems
with high-dimensional state spaces, contact-rich environ-
ment dynamics, and complex nonlinear dynamics that pose
a considerable modeling challenge. The experiments that
compare our PSMPC with MPC demonstrate that it is our
uncertainty directed exploration that makes the model-based
learning control more sample-efficient and achieve better
asymptotic performance. However, the exploration in model-
based learning control had been a largely under explored
domain, which is an exciting direction for future work to
improve the asymptotic performance of model-based method.
Our exploration strategy may provide some enlightenment
for system identification.

Compared with model-free methods, apart from the sam-
ple efficiency, model-based methods are also beneficial in
that the learned model can be used by robot to accom-
plish various tasks, by simply changing the reward or cost
function, without additional training. This is compelling
especially when looking toward application to real robots.
The improved sample efficiency and transferability would
bring model-based learning control out of the simulation
world and into the realm of reality. Our experiments also
demonstrate the benefit of neural network in policy approxi-
mation. Combination of policy optimization and model-based
control deserves further research to make robot learning
process more efficient which are important for application
in real time robot control.
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