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ABSTRACT

Self-supervised contrastive learning (SSCL) has performed
excellently on time series classification tasks. Most SSCL-
based classification algorithms generate positive and negative
samples in the time or frequency domains, focusing on min-
ing similarities between them. However, two issues are not
well addressed in the SSCL framework: the sampling bias
and the task-agnostic representation problems. Sampling bias
indicates fake negative sample selection in SSCL, and task-
agnostic representation results in the unknown correlation be-
tween the extracted feature and downstream tasks. To address
the issues, we propose Debiased Contrastive learning with
weak Supervision framework, abbreviated as DCS. It em-
ploys the clustering operation to remove fake negative sam-
ples and introduces weak supervisory signals into the SSCL
framework to guide feature extraction. Additionally, we pro-
pose a channel augmentation method that allows the DCS
to extract features from local and global perspectives simul-
taneously. The comprehensive experiments on the widely
used datasets show that DCS achieves performance superior
to state-of-the-art methods on the widely used popular bench-
mark datasets.

Index Terms— Time series classification, weak supervi-
sion, contrastive learning, data augmentation

1. INTRODUCTION

With the rapid growth of the Internet of Things and other
monitoring systems, there has been an enormous increase in
time series data[1]. Time series classification (TSC), which
comprehensively recognizes system patterns, has recently be-
come a popular research topic. TSC plays a crucial role in dif-
ferent application domains, e.g., action recognition [2], trans-
portation [3] and healthcare [4]. Self-supervised contrastive
learning (SSCL) has achieved great success in TSC problems
in the absence of labeled data [5]. SSCL utilizes consistency
constraints between different views of one sample to extract a
semantic representation of the sample, named the pretraining
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step. Then SSCL maps the extracted representations to the
downstream tasks with the guidance of a few annotated data,
named as fine-tuning step. This strategy refines the seman-
tic information of original data and improves the efficiency in
using labels [6].

However, there are two challenges when using SSCL for
feature extraction: 1) distribution issue: Conventional SSCL
typically results in features being evenly distributed on a hy-
persphere, which is clearly at odds with the goal of TSC tasks
to have features exhibit a clustered distribution in hidden
space [7]; 2) task-agnostic representation issue: The pretrain-
ing and fine-tuning are two separate steps, which result in
the absence of a constraint between the extracted represen-
tations and downstream tasks. There is a risk of emerging
sub-optimal representation, which can consequently impact
model performance in downstream tasks.

Sampling bias is the primary cause of the distribution is-
sue. In the traditional SSCL, only the augmented view of a
sample is regarded as a positive sample, while the rest are
treated as negatives. This results in each sample being treated
as an independent class in SSCL, leading to a uniform fea-
ture distribution. Modifying the conventional Info-NCE loss,
which enhances the discriminative capability of the loss func-
tion for actual positive samples, represents a viable approach
[8]. Furthermore, to tackle the task-agnostic representation is-
sue, it is imperative to introduce weak supervisory signals that
guide the feature extractor’s training, ensuring the extracted
representation’s relevance to downstream classification tasks.

Based on the above analysis, we propose a novel frame-
work for the TSC tasks named Debiased Contrastive learning
with weak Supervision framework, abbreviated as DCS. The
main contributions are summarized as follows:

• DCS introduces supervisory signals into SSCL via
weight dual-updating scheme (WDUS) to tackle task-
agnostic representation issue. And cluster-wise SSCL
is employed to deal with sampling bias.

• Channel augmentation is proposed to fuse the time and
frequency information, enabling the framework to ex-
tract features from both local and global perspectives.

• A comprehensive evaluation compared with several
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state-of-the-art TSC models on UCR/UEA bench-
marks, DCS releases prior performance.

2. METHODOLOGY

Given two datasets: labeled sub-dataset X super ∈ RM×L×C

and unlabeled sub-dataset X self ∈ RN×L×C . Samples in
X super contain the data and label, defined as X super =
{X1,X2, . . . ,XM}, where Xm = (xm, ym). In con-
trast, samples in X self only contain the data, i.e., X self =
{X1,X2, . . . ,XN}, where Xn = (xn). In most cases,
M << N and we define sampling factor p = M

N . Our
goal is to obtain the robust feature extractor based on X super

and X self , capable of transforming raw time series data into
representations suitable for downstream tasks.

As illustrated in Figure.1, our framework consists of the
self-supervised and supervised branches. We aim to obtain
the robust feature extractor, Self-Trunk, by introducing super-
visory signals into the SSCL model to alleviate task-agnostic
representation issue. Meanwhile, we employ the clustering-
based pseudo-label generation mechanism to eliminate the
sampling bias. After the pretraining stage, we train a simple
classifier, Self-Classifier, that can map the features extracted
by Self-Trunk to the downstream tasks.

2.1. Sample and Channel Augmentation

We generate the weak augmented views Xw and strong aug-
mented views Xs of original samples X through jittering and
permutation, respectively. On the one hand, strong augmenta-
tion involves distorting the chronological order of time series,
thereby affecting the original characteristics. On the other
hand, weak augmentation introduces some slight variations
to the time series without significantly altering their shape.

In DCS, we generate X super and X self by dropping the
labels of the original data X and sampling p percent of anno-
tated data simultaneously. X super and X self are transformed
to X̂ super, X̂ self

w and X̂ self
s by data augmentation, i.e.,

X̂ super = C(X super, Tw(X super), Ts(X super)), (1)

X̂ self
w = Tw(X self ), (2)

X̂ self
s = Ts(X self ), (3)

where B is the batch size, p is the sampling factor of X super,
L and C represent the length and the number of channels of
a time series sample, respectively. X̂ super ∈ R3B∗p×L×C is
the full augmented data of X super, X̂ self

w ∈ RB×L×C and
X̂ self

s ∈ RB×L×C are the weakly and strongly augmented
views of X self , respectively. C(·) is a concatenation oper-
ation, Tw(·) and Ts(·) are weak and strong augmentations,
respectively.

Generally, the time and frequency domains provide dis-
tinct yet equivalent descriptions of the same signal with iden-
tical semantics. The time domain primarily captures the local

and dynamic properties. In contrast, the frequency domain
emphasizes global and stable features. To effectively inte-
grate time and frequency information, we propose a channel
augmentation method that utilizes the amplitude and phase
of frequency information as a new channel into the data.
This expansion increases the dataset dimension RB×L×C to
RB×L×3C as follow:

R+ Ij = FFT (X ), (4)
X = C(X ,R, I), (5)

where R and I are the real and imaginary part of frequency
respectively, FFT (·) is the fast fourier transform. After
sample and channel augmentation operation, we acquire
X̂ super ∈ R3B∗p×L×3C and X̂ self ∈ RB×L×3C .

2.2. Cluster-wise SSCL

The SSCL method plays a pivotal role in extracting valuable
information from positive pairs while accentuating the differ-
ences in features among negative pairs [9]. However, the cur-
rent implementation of SSCL employs a strategy where only
two views, both augmented from the same sample, are uti-
lized as positive pairs. In contrast, the remaining views are
categorized as negative pairs. This approach treats each sam-
ple as an independent class, leading to a uniform distribution
of features among samples with the same actual label, i.e.,
sampling bias. A uniform feature distribution is suboptimal
for downstream tasks like classification or anomaly diagnosis.
In the context of classification tasks, it proves advantageous
to possess distinct clustering distributions of features derived
from various samples [10].

To deal with the sampling bias, we perform a clustering
operation on the features F to generate pseudo-labels denoted
as Cpsd and determine the relationship of F based on Cpsd. F
with identical Cpsd are considered positive, while the others
are considered negative.

In the clustering process, we begin by specifying the de-
sired number of clusters n and then randomly select n fea-
tures as the initial cluster centers. Each feature is assigned
Cpsd based on its proximity to the nearest cluster center, de-
termined by the Euclidean distance. Subsequently, we recal-
culate the cluster centers by averaging the features with the
same Cpsd. This process is repeated iteratively until the label
of each feature remains unchanged, signifying convergence.

The debiased cluster-wise InfoNCE loss is as follow:

LDebiased = −E[
esim(F,F+)/τ

log(
∑

n∈N(i) e
sim(F,F−

n ))
]

=
1

|I|
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
esim(Fi,F

+
p )/τ∑

n∈N(i) e
sim(Fi,F

−
n )/τ

,

(6)

where F+ and F− are positive and negative features of F
respectively, I is the set of features, P (i) and N(i) are the set
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Fig. 1. Overview of the proposed framework. DCS consists of self-supervised and supervised branches, which are trained si-
multaneously. Sub-datasets X super and X self are sampled from original dataset X . In supervised branch, X super is augmented
to X̂ super and then extracts features F super by Super-Trunk. Super-Classifier predicts the labels Cpred of F super. We employ
cross-entropy loss constraints supervised branch. In self-supervised branch, X self generates the views X̂ self

w and X̂ self
s . Then

assigning labels Cpsd to X̂ self
w and X̂ self

s via clustering operation. Finally, a cluster-wise NCE loss is utilized to constrain
the self-supervised branch. When the two branches are trained in parallel, we introduce supervisory signals generated by the
supervised branch to the self-supervised branch via WDUS.

of F+ and F− for Fi, sim(·, ·) denotes cosine similarity, τ is
the temperature coefficient.

2.3. Weight Dual-updating Scheme

To generate effective supervisory signals, we construct the
supervised branch in Figure. 1. Self-supervise branch and
supervised branch are trained independently, resulting in the
Self-Trunk and Super-Trunk, which are feature extractors of
each branch. The Super-Trunk incorporates supervisory sig-
nals, while the Self-Trunk contains self-supervised informa-
tion. Then, WDUS is employed to bidirectional exchange in-
formation between them.

WDUS treats Super-Trunk’s parameters as supervisory
signals and transposes the signal to Self-Trunk through
weight updating. Simultaneously, Self-Trunk’s parameters
are also transposed to Super-Trunk through the same weight
updating manner to narrow the gap between them and pre-
vent parameter divergence. The mathematical expression of
WDUS is as follows:

Pself
i = α ∗ Pself

i + (1− α) ∗ Psuper
i , i = 1, 2, ..., n,

(7)

Psuper
i = β ∗ Psuper

i + (1− β) ∗ Pself
i , i = 1, 2, ..., n,

(8)

where Pi is the ith corresponding parameter in the Self-Trunk
and Super-Trunk, α and β are the weighting factors, n denotes
the number of parameters in feature extractor.

3. EXPERIMENTS

3.1. Preparation

We comprehensively evaluate our proposed framework by
adopting 28 widely-used time series datasets from popular
archives. Specifically, we utilize 21 univariate datasets (Dis-
talPhalanxOutlineAgeGroup ∼ ProximalPhalanxTW) from
UCR archive [11] and 7 multivariate datasets (Epilepsy ∼
StandWalkJump) from UEA archive [12]. Each dataset has
been separated as train sub-dataset and test sub-dataset.

We compare the performance of DCS with several SOTA
time series classification algorithms, i.e., TS2Vec [5], TS-
TCC [13], TNC [14], TST [15], T-Loss [16], DTW [17]. Due
to space limitations, we only show the experimental results
with accuracy (ACC) as an indicator.

ACC =
TP + TN

TP + TN + FP + FN
(9)

where TP and TN represent the true positive and true nega-
tive, FP and FN indicate the false positive and false nega-
tive, respectively.

3.2. Implementation Details

Temporal convolutional network (TCN) [18] with six layers
is employed as our main structure of Self-Trunk and Super-
Trunk. Additionally, both Self-Classifier and Super-Classifier
are implemented as two-layer MLP architecture. Considering
that both UCR and UEA are small datasets with multi-classes,
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Table 1. Experimental results on time series classification task. The best results are highlighted in bold, and the second-best
results are underlined. The average rank describes the comprehensive performance of frameworks in various datasets.

Dataset TS2Vec TS-TCC TNC TST T-Loss DTW DCS Dataset TS2Vec TS-TCC TNC TST T-Loss DTW DCS
DistalPhalanx

OutlineAgeGroup 0.727 0.727 0.741 0.755 0.741 0.770 0.755
MiddlePhalanx

OutlineAgeGroup 0.636 0.656 0.643 0.630 0.617 0.500 0.662

DistalPhalanx
OutlineCorrect 0.775 0.775 0.754 0.754 0.728 0.717 0.786 MiddlePhalanx

OutlineCorrect 0.838 0.825 0.818 0.818 0.753 0.698 0.839

DistalPhalanxTW 0.698 0.676 0.669 0.676 0.568 0.590 0.705 MiddlePhalanxTW 0.591 0.591 0.571 0.610 0.506 0.506 0.630
Earthquakes 0.748 0.748 0.748 0.748 0.748 0.719 0.755 MoteStrain 0.863 0.851 0.825 0.843 0.768 0.835 0.878

ECG200 0.920 0.940 0.830 0.880 0.830 0.770 0.890
ProximalPhalanx
OutlineAgeGroup 0.844 0.844 0.854 0.839 0.854 0.805 0.888

ECG5000 0.935 0.933 0.937 0.941 0.928 0.924 0.938
ProximalPhalanx
OutlineCorrect 0.900 0.859 0.866 0.873 0.770 0.784 0.893

FaceAll 0.805 0.786 0.766 0.813 0.504 0.808 0.808
Proximal

PhalanxTW 0.824 0.771 0.810 0.800 0.780 0.761 0.820

FordA 0.948 0.928 0.902 0.930 0.568 0.555 0.950 Epilepsy 0.964 0.971 0.957 0.957 0.949 0.964 0.949
FordB 0.807 0.793 0.733 0.815 0.507 0.620 0.826 FingerMovements 0.480 0.580 0.470 0.460 0.560 0.530 0.660

GunPoint 0.987 0.980 0.967 0.993 0.827 0.907 0.933 Heartbeat 0.683 0.741 0.746 0.751 0.746 0.717 0.756
Ham 0.724 0.724 0.752 0.743 0.524 0.467 0.829 MotorImagery 0.510 0.580 0.500 0.610 0.500 0.500 0.660

Herring 0.641 0.594 0.594 0.594 0.594 0.531 0.688 SelfRegulationSCP1 0.812 0.843 0.799 0.823 0.754 0.775 0.904
InsectWingbeat

Sound 0.630 0.597 0.549 0.415 0.266 0.355 0.525 SelfRegulationSCP2 0.578 0.539 0.550 0.533 0.550 0.539 0.611

ItalyPower
Demand 0.961 0.954 0.928 0.955 0.845 0.950 0.969 StandWalkJump 0.467 0.333 0.400 0.333 0.267 0.200 0.600

Total Average Rank 2.679 3.179 3.786 3.107 5.000 5.071 1.607

Table 2. Ablation study of DCS on MoteStrain. We randomly
mask (expressed as ✓) three main components in DCS.

Dataset Masked Component ACCChannel
Augmentation

Supervisory
signal

Cluster-wise
Constrastive loss

MoteStrain

0.880 ± 0.013
✓ 0.855 ± 0.012
✓ ✓ 0.671 ± 0.146
✓ ✓ 0.813 ± 0.011
✓ ✓ ✓ 0.530 ± 0.088

✓ 0.832 ± 0.019
✓ ✓ 0.805 ± 0.010

✓ 0.833 ± 0.006

we choose the supervised sampling factor p = 0.2 to obtain
available supervisory signals. To reduce the impact of ran-
dom initialization, each ACC value in Table.1 is the average
of the results of multiple experiments. In the clustering pro-
cess, the number of clusters n is larger than the actual number
of categories c in the dataset, n = c + 2 [19]. According to
orthogonal experiments, α and β are set to 0.6 and 0.8.

3.3. Performance Comparisons

It is clear that the DCS demonstrates its capability to achieve
optimal performance in both univariate and multivariate
datasets and outperforms the rest of the baselines by a great
margin. Compared with the previous best algorithm, TS2Vec,
the DCS framework exhibits a notable performance improve-
ment on univariate datasets; meanwhile, the improvement
becomes even more significant when applied to multivariate
datasets. Compared to other algorithms, excluding TS2Vec,
the DCS framework demonstrates superior performance,
achieving an average increase of 2-3 percent in ACC.

3.4. Ablation Study

MoteStrain dataset is utilized to evaluate the feature extrac-
tion capability of DCS when dealing with datasets with lim-
ited samples, shown in Table 2. A basic model (strategy 5)
only with Self-Trunk and classical InfoNCE is employed to
compare the effectiveness of each component. When com-
paring strategy 5 with 3, 4, and 7, it is evident that each com-
ponent contributes significantly to improving the performance
of the basic model, respectively, with an increase in ACC of
over 10 percent. We also compare the synergy between com-
ponents, e.g., strategy 2 with 3. The pairwise fusion between
components can improve its overall effectiveness to a certain
extent. Finally, DCS achieves state-of-the-art performance in
the MoteStrain dataset.

4. CONCLUSION

This article proposes a debiased contrastive learning frame-
work with weak supervision (DCS) for time series classifi-
cation tasks. Although SSCL has succeeded, the distribution
and task-agnostic representation issues must be better inves-
tigated. We employ cluster-wise InfoNCE and WDUS with
supervisory signals to fill the gaps. Besides, we propose a
channel augmentation method to fuse time and frequency do-
main information. Based on these considerations, the pro-
posed DCS framework can deal with the challenges of vari-
ous TSC tasks. We obtain better performance on widely used
datasets than the last classification algorithms. Extensive ex-
perimental studies on UCR and UEA benchmark datasets re-
veal that our DCS obtains a state-of-the-art performance. In
the future, we plan to simplify our DCS framework and search
for more effective supervisory signal generator.
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