Guanzhong Tian
Researcher
个人简介
田冠中,浙江大学宁波研究院、浙江大学控制与工程学院助理研究员,硕士生导师,入选宁波市“甬江引才工程”青年创新个人,宁波市拔尖人才。
本科毕业于哈尔滨工业大学自动化专业,获学士学位,2021年获浙江大学控制科学与工程专业博士学位,期间获浙江大学资助赴美国加州大学默塞德分校进行联合培养。
长期从事机器感知、计算机视觉、神经网络模型轻量化等方面的研究。主持主持国家自然科学基金委青年科学基金项目,宁波市青年博士创新项目,工业控制国家实验室开放课题。作为课题骨干参与国家重点研发计划、国家自然科学基金、浙江省自然科学基金、企事业单位委托等多项科研项目。在IEEE TIP、TNNLS、TCSVT、CVPR、ECCV、BMVC等领域内重要国际期刊/会议上发表论文20余篇。现任国际期刊《Journal of Intelligent Manufacturing and Special Equipment》青年编委。担任人工智能顶级会议CVPR,ECCV,BMVC和人工智能高水平期刊TNNLS,Neurocomputing,Neural Computing and Applications审稿人。
招生资格:硕士研究生
教学与课程
- 计算机视觉(研究生专业课)
- 机器视觉及应用(研究生专业课)
- 高阶工程实践 (研究生公共课)
工作研究项目
- 国家自然科学基金委青年科学基金项目,面向移动机器人的深度模型稀疏化关键理论与可解释性研究,62303405,主持
- 宁波市自然科学基金青年博士创新研究项目,深度神经网络稀疏化的可解释性研究与应用,2023J40,主持
- 工业控制国家实验室开放课题,小数据条件下基于深度网络模型的端到端工业视觉检测,ICT2022B31, 主持
- 宁波市甬江人才工程青年创新人才项目,基于深度模型的复杂零部件智能视觉检测关键技术与装备,主持
- 国家重点研发计划课题,2018YFB1702203,网络协同制造和智能工厂,参与
- 国家重点研发计划课题,2018AAA0101503,大电网调控人在回来混合增强学习方法研究,参与
- 企业委托科研,AI机器视觉智能型自动扶梯,项目负责人
研究与成果
Selected Publications
- Siqi Li, Jun Chen, Shanqi Liu, Chengrui Zhu, Guanzhong Tian*, Yong Liu*MCMC: Multi-Constrained Model Compression via One-Stage Envelope Reinforcement Learning,EEE Transactions on Neural Networks and Learning Systems,2024.
- Haoyang He, Zhishan Li, Guanzhong Tian*, Hongxu Chen, Lei Xie*, Shan Lu, Hongye Su. Towards Accurate Dense Pedestrian Detection via Occlusion-prediction Aware Label Assignment and Hierarchical-NMS[J]. Pattern Recognition Letters, 2023.
- Jun Chen, Shipeng Bai, Tianxin Huang, Mengmeng Wang, Guanzhong Tian*,Yong Liu*. Data-Free Quantization via Mixed-Precision Compensation without Fine-Tuning, Pattern Recognition,2023: 109780.
- Liang Liu , Boshen Zhang , Jiangning Zhang , Wuhao Zhang , Zhenye Gan, Guanzhong Tian , Wenbing Zhu , Yabiao Wang , Chengjie Wang.MixTeacher: Mining Promising Labels with Mixed Scale Teacher for Semi-Supervised Object Detection, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023)
- Guanzhong Tian, Yiran Sun, Yuang Liu, Xianfang Zeng, Mengmeng Wang, Yong Liu, Jiangning Zhang, Jun Chen. Adding Before Pruning: Sparse Filter Fusion for Deep Convolutional Neural Networks via Auxiliary Attention, IEEE Transactions on Neural Networks and Learning Systems,2021.
- Guanzhong Tian, Liang Liu, JongHyok Ri, Yong Liu, Yiran Sun. ObjectFusion: An object detection and segmentation framework with RGB-D SLAM and convolutional neural networks, Neurocomputing, 2019, 345: 3-14.
- Guanzhong Tian, Jun Chen, Xianfang Zeng, Yong Liu. Pruning by Training: A novel Deep Neural NetworkCompression Framework for Image Processing, IEEE Signal Processing Letters, 2021.
- Guanzhong Tian, Yi Yuan, Yong Liu. Audio2face: Generating speech/face animation from single audio with attention-based bidirectional lstm networks, 2019 IEEE international conference on Multimedia & Expo Workshops.
- Jong-Hyok Ri#, Guanzhong Tian#, Yong Liu, Wei-hua Xu, Jun-gang Lou. Extreme learning machine with hybrid cost function of G-mean and probability for imbalance learning, International Journal of Machine Learning and Cybernetics, 2020, 11(9): 2007-2020.
- Xianfang Zeng, Wenxuan Wu, Guangzhong Tian, Fuxin Li, and Yong Liu. Deep Superpixel Convolutional Network for Image Recognition. IEEE Signal Processing Letters,2021.
- Zhishan Li, Yiran Sun, Guanzhong Tian, Lei Xie, Yong Liu, Hongye Su, Yifan He. A compression pipeline for one-stage object detection model, Journal of Real-Time Image Processing (2021): 1-14.
- Xianfang Zeng, Yusu Pan, Hao Zhang, Mengmeng Wang, Guanzhong Tian, Yong Liu. Unpaired salient object translation via spatial attention prior, Neurocomputing, 2020.
Google Scholar
https://scholar.google.com/citations?user=0q-7PI4AAAAJ&hl=zh-CN