Address

Contact Information

Email: gztian@zju.edu.cn

Guanzhong Tian

Researcher

个人简介

田冠中,浙江大学宁波研究院、浙江大学控制与工程学院助理研究员,硕士生导师,入选宁波市“甬江引才工程”青年创新个人,宁波市拔尖人才。

本科毕业于哈尔滨工业大学自动化专业,获学士学位,2021年获浙江大学控制科学与工程专业博士学位,期间获浙江大学资助赴美国加州大学默塞德分校进行联合培养。

长期从事机器感知、计算机视觉、神经网络模型轻量化等方面的研究。主持主持国家自然科学基金委青年科学基金项目,宁波市青年博士创新项目,工业控制国家实验室开放课题。作为课题骨干参与国家重点研发计划、国家自然科学基金、浙江省自然科学基金、企事业单位委托等多项科研项目。在IEEE TIP、TNNLS、TCSVT、CVPR、ECCV、BMVC等领域内重要国际期刊/会议上发表论文20余篇。现任国际期刊《Journal of Intelligent Manufacturing and Special Equipment》青年编委。担任人工智能顶级会议CVPR,ECCV,BMVC和人工智能高水平期刊TNNLS,Neurocomputing,Neural Computing and Applications审稿人。

招生资格:硕士研究生

教学与课程

  1. 计算机视觉(研究生专业课)
  2. 机器视觉及应用(研究生专业课)
  3. 高阶工程实践 (研究生公共课)

工作研究项目

  1. 国家自然科学基金委青年科学基金项目,面向移动机器人的深度模型稀疏化关键理论与可解释性研究,62303405,主持
  2. 宁波市自然科学基金青年博士创新研究项目,深度神经网络稀疏化的可解释性研究与应用,2023J40,主持
  3. 工业控制国家实验室开放课题,小数据条件下基于深度网络模型的端到端工业视觉检测,ICT2022B31, 主持 
  4. 宁波市甬江人才工程青年创新人才项目,基于深度模型的复杂零部件智能视觉检测关键技术与装备,主持
  5. 国家重点研发计划课题,2018YFB1702203,网络协同制造和智能工厂,参与
  6. 国家重点研发计划课题,2018AAA0101503,大电网调控人在回来混合增强学习方法研究,参与
  7. 企业委托科研,AI机器视觉智能型自动扶梯,项目负责人

研究与成果

Selected Publications
  1. Siqi Li, Jun Chen, Shanqi Liu, Chengrui Zhu, Guanzhong Tian*, Yong Liu*MCMC: Multi-Constrained Model Compression via One-Stage Envelope Reinforcement Learning,EEE Transactions on Neural Networks and Learning Systems,2024.
  2. Haoyang He, Zhishan Li, Guanzhong Tian*, Hongxu Chen, Lei Xie*, Shan Lu, Hongye Su. Towards Accurate Dense Pedestrian Detection via Occlusion-prediction Aware Label Assignment and Hierarchical-NMS[J]. Pattern Recognition Letters, 2023.
  3. Jun Chen, Shipeng Bai, Tianxin Huang, Mengmeng Wang, Guanzhong Tian*,Yong Liu*. Data-Free Quantization via Mixed-Precision Compensation without Fine-Tuning, Pattern Recognition,2023: 109780.
  4. Liang Liu , Boshen Zhang , Jiangning Zhang , Wuhao Zhang , Zhenye Gan, Guanzhong Tian , Wenbing Zhu , Yabiao Wang , Chengjie Wang.MixTeacher: Mining Promising Labels with Mixed Scale Teacher for Semi-Supervised Object Detection,  IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023)
  5. Guanzhong Tian, Yiran Sun, Yuang Liu, Xianfang Zeng, Mengmeng Wang, Yong Liu, Jiangning Zhang, Jun Chen. Adding Before Pruning: Sparse Filter Fusion for Deep Convolutional Neural Networks via Auxiliary Attention, IEEE Transactions on Neural Networks and Learning Systems,2021.
  6. Guanzhong Tian, Liang Liu, JongHyok Ri, Yong Liu, Yiran Sun. ObjectFusion: An object detection and segmentation framework with RGB-D SLAM and convolutional neural networks,  Neurocomputing, 2019, 345: 3-14.
  7. Guanzhong Tian, Jun Chen, Xianfang Zeng, Yong Liu. Pruning by Training: A novel Deep Neural NetworkCompression Framework for Image Processing, IEEE Signal Processing Letters, 2021.
  8. Guanzhong Tian, Yi Yuan, Yong Liu. Audio2face: Generating speech/face animation from single audio with attention-based bidirectional lstm networks, 2019 IEEE international conference on Multimedia & Expo Workshops.
  9. Jong-Hyok Ri#, Guanzhong Tian#, Yong Liu, Wei-hua Xu, Jun-gang Lou. Extreme learning machine with hybrid cost function of G-mean and probability for imbalance learning, International Journal of Machine Learning and Cybernetics, 2020, 11(9): 2007-2020.
  10. Xianfang Zeng, Wenxuan Wu, Guangzhong Tian, Fuxin Li, and Yong Liu. Deep Superpixel Convolutional Network for Image Recognition. IEEE Signal Processing Letters,2021. 
  11. Zhishan Li, Yiran Sun, Guanzhong Tian, Lei Xie, Yong Liu, Hongye Su, Yifan He. A compression pipeline for one-stage object detection model, Journal of Real-Time Image Processing (2021): 1-14.
  12. Xianfang Zeng, Yusu Pan, Hao Zhang, Mengmeng Wang, Guanzhong Tian, Yong Liu. Unpaired salient object translation via spatial attention prior, Neurocomputing, 2020.

Google Scholar

https://scholar.google.com/citations?user=0q-7PI4AAAAJ&hl=zh-CN